Conventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Limestone Cements were used .The polypropylene fibers (PP) and polyvinyl alcohol acetate (PVA) were used to make four different mixes. The experiments were performed at 7, 28, 60, and 90 days after water curing. For all tests, mixes including pp fibers and PVA solution performed better than those without fibers.
In this work, an investigation for the dynamic analysis of thin composite cylindrical and spherical shells is presented. The analytical solution is based upon the higher order shear deformation theory of elastic shells from which the developed equations are derived to deal with orthotropic layers. This will cover the determination of the fundamental natural frequencies and mode shapes for simply supported composites cylindrical and spherical shells.
The analytical results obtained by using the derived equations were confirmed by the finite element technique using the well known Ansys package. The results have shown a good agreement with a maximum percentage of discrepancy, which gives a confidence o
... Show MoreThe present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSY
The present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c
... Show MoreIn this work, polypyrrole (PPy) composites were chemically prepared by a chemical oxidation method. Also, Tungsten Trioxide (WO3) nanoparticles were prepared and added in certain proportions to PPy. The structure properties were studied for the polypyrole and tungesten trioxide separately before mixing them together. The X-ray diffraction (XRD) analysis revealed a hexagonal WO3 and a triclinic PPy. It was observed that the nano-composite prepared by the addition of WO3 with 10 and 20% volume ratios to PPy shows a triclinic phase with the presence of hexagons. The molecular structures of PPy, WO3, and PPy–WO3 nano composites were depicted by Fourier-transform infrare
... Show MoreReactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and
... Show MoreBearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel
... Show MorePolyvinyl alcohol, (PVA) was prepared using polyvinyl acetate emulsion (manufactured by Al-Jihad factory,
That-Al-Sawary Company) as a local raw material. In this investigation, polyvinyl acetate emulsion was converted to
solid form by coagulation the polymer from its emulsion using sodium sulphate salt as coagulant aid, then alcoholyzed
the solid polyvinyl acetate in methanol using sodium hydroxide as catalyst, polyvinyl alcohol produced by this method is
a dry, white to yellow powder.
Three affecting variables on the degree of hydrolysis of PVA were studied, these variable are Catalyst to
polymer weight ratio in the range of 0.01 – 0.06, reaction time in the range of 20 – 90 min, and reaction temperature in
the
Removing Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
The main objectives of this study are to study the enhancement of the load-carrying capacity of Asymmetrical castellated beams with encasement the beams by Reactive Powder Concrete (RPC) and lacing reinforcement, the effect of the gap between top and bottom parts of Asymmetrical castellated steel beam at web post, and serviceability of the confined Asymmetrical castellated steel. This study presents two concentrated loads test results for four specimens Asymmetrical castellated beams section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement of the Asymmetrical castellated steel beam consists of, flanges unstiffened element height was filled with RPC for each side and laced reinforced which are use
... Show More