This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), atomic force microscope (AFM) scanning electron microscope (SEM) and elemental analysis. XRD showed presence diffraction peak at 11.95 for GO and this diffraction disappeared for RGO. Diffraction peak of crystal planes for MnO2 matched well with standard data. The diameter of MnO2 nanotubes was determined using Debye scherrer equation and found to be 11.6nm corresponding with AFM image. The AFM images proves the growth of MnO2 nanotubes from the MnO2 nano spherical shape these images are very rare in the scientific literature. The real permittivity (ε'), imaginary permittivity (ε") and a.c conductivity (S.m-1) of all nanomaterials were measured by LCR meter at frequencies ranging from 100Hz to 100 KHz. The result showed the values of the real permittivity for RGO higher than GO at all frequencies while RGOTM have lower values of real permittivity at low frequency due to presence of MnO2 nanorods which affected the accumulation of charges. The imaginary permittivity of f-MWCNT-GOT and RGO were at low frequency higher than the real values due to their high conductivity. Also imaginary permittivity of f-MWCNT-GOT nanocomposites at all frequencies higher than real which have negative values at frequencies in range 400 to 4KHz .a.c conductivity for RGO and f-MWCNT-GOT nanocomposite have higher values compared with all prepared nanomaterial, at the same time the modified WE with f-MWCNT-GOT nanocomposite show the best detection limits in comparison with other prepared modified WE. Also the prepared nanomaterials were used to study novel sensing system and develop electrochemical sensor capable of detecting some of antibiotics such as Ampicillin (AMP), Amoxilline (AMOX) which have β-lactam ring and Tetracycline (TET) which contains four hydrocarbon rings using cyclic voltammetry (CV) technique via modification of the working electrode of the SPCE with the prepared nanomaterial by deposition process. f-MWCNT-GOT/SPCE nanocomposite showed higher electrochemical reaction response and lower limit of detection. The working electrodes surfaces were studied with AFM and SEM techniques. The value of apparent heterogeneous electron transfer rate constant (ks) was determined using the value of electron transfer coefficient (α) and the result showed that f-MWCNT-GOT/SPCE showed higher (ks).
Pyridine-2, 6-dicarbohydrazide comp (2) was synthesized from ethanolic solution of diethyl pyridine-2, 6- dicarboxylate comp (1) with excess of hydrazine hydrate. Newly five polymers (P1-P5) were synthesized from reaction of pyridine-2, 6-dicarbohydrazide comp (2) with five different di carboxylic acid in the presence of poly phosphoric acid (PPA). The antibacterial activity of the synthesized polymers was screened against some gram positive and gram negative bacteria. Antifungal activity of these polymers was evaluated in vitro against some yeast like fungi such as albicans (candida albicans). Polymers P3, P4 and P5 exhibited highest antibacterial and antifungal against all microorganisms under test.
A new set of metal complexes by the general formula [M(P)2(H2O)2]Cl2 has been prepared through the interaction of the new Ligand [N1, N4-bis(4-methoxyphenyl)succinamide] (P) derived from succinyl chloride with p-anisidine with the transition metal ions [Cu(II), Mn(II), Cd(II), Co(II) and Ni(II)]. Compounds diagnosed by TGA, 1 H, 13CNMR and Mass spectra (for (P)), Fourier-transform infrared and Electronic spectrum, Magnetic measurement, molar conduct, (%M, %C, %H, %N). These measurements indicate that (P) is associated with the metal ion in a bi-dentate fashion by nitrogen atoms (the amide group), and the octahedral composition of these complexes is suggested. Staphylococcus Aureus (+) and Escherichia Coli (–) were studied for the antibact
... Show MoreAbstract As a part of our ongoing project on the design and synthesis of new 4-thiazolidinone derivatives with antimicrobial activity, four new 4-thiazolidinone derivatives carrying bromo, nitro, methyl, and chloro groups on the benzene ring were synthesized by starting with the 7-amino-4-methylcoumarin moiety, linking coumarin with various phenyl isothiocynate to form the thiourea group, and then cyclizing the derivatives, characterized by IR and 1HNMR, and assayed in vitro for their antimicrobial activity against Gram positive and Gram negative bacteria and fungi. Overall, 2-(4-methyl-2-oxo-2H-chromen-3-yl)-3-(4-nitrophenyl) thiazolidin-4-one to be the most powerful individuals in the series. Based on the observed data, it can be sta
... Show MoreThe synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
4-amino-3-(4-(((4-hydroxy-3,5dimethoxybenzyl)oxy)methyl)phenyl)-1,2,4-triazole-5-thione was synthesized by to method the first one from melt reaction of 4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoic acid with Thiocarbonyldihydrazide, the second method from convert the corresponded acid hydrazide to potassium 2-(4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoyl)hydrazinecarbodithioate salt then react with hydrazine hydrate. Newly Schiff base (7a-7f) were synthesized from reaction the 4-amino-1,2,4-triazol with substituted hydroxybenzaldehyde. The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to scree
... Show MoreThree azo compounds were synthesized in two different methods, and characterized by FT-IR, HNMR andVis) spectra, melting points were determined. The inhibitory effects of prepared compounds on the activity of human serum cholinesterase have been studied in vitro. Different concentrations of study the type of inhibition. The results form line weaver-Burk plot indicated that the inhibitor type was noncompetitive with a range (33.12-78.99%).
Newly series of 6,6’-((2-(Aryl)dihydropyrimidine-1,3(2H,4H)-diyl)bis(methylene))bis(2-methoxy phenol) (3a-i) were synthesized from cyclization of 6,6’-((propane-1,3-diylbis (azanediyl)) bis(methylene)) bis(2-methoxyphenol) with several aryl aldehyde in the presence of acetic acid. The newly compounds characterized from their IR, NMR and EIMs spectra. The antioxidant capacity of these compounds screened by utilizing DPPH and FRAP assays. Compounds 3g and 3i exhibited significant antioxidant capability in both assays. Docking study for these compounds as a potential inhibitors of gyrase enzyme were carried out. Compound 3g exhibited significant inhibition with binding free energies (DG) higher than novobiocin. compounds 2, 3a, 3b, 3
... Show More(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions h
... Show More