This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), atomic force microscope (AFM) scanning electron microscope (SEM) and elemental analysis. XRD showed presence diffraction peak at 11.95 for GO and this diffraction disappeared for RGO. Diffraction peak of crystal planes for MnO2 matched well with standard data. The diameter of MnO2 nanotubes was determined using Debye scherrer equation and found to be 11.6nm corresponding with AFM image. The AFM images proves the growth of MnO2 nanotubes from the MnO2 nano spherical shape these images are very rare in the scientific literature. The real permittivity (ε'), imaginary permittivity (ε") and a.c conductivity (S.m-1) of all nanomaterials were measured by LCR meter at frequencies ranging from 100Hz to 100 KHz. The result showed the values of the real permittivity for RGO higher than GO at all frequencies while RGOTM have lower values of real permittivity at low frequency due to presence of MnO2 nanorods which affected the accumulation of charges. The imaginary permittivity of f-MWCNT-GOT and RGO were at low frequency higher than the real values due to their high conductivity. Also imaginary permittivity of f-MWCNT-GOT nanocomposites at all frequencies higher than real which have negative values at frequencies in range 400 to 4KHz .a.c conductivity for RGO and f-MWCNT-GOT nanocomposite have higher values compared with all prepared nanomaterial, at the same time the modified WE with f-MWCNT-GOT nanocomposite show the best detection limits in comparison with other prepared modified WE. Also the prepared nanomaterials were used to study novel sensing system and develop electrochemical sensor capable of detecting some of antibiotics such as Ampicillin (AMP), Amoxilline (AMOX) which have β-lactam ring and Tetracycline (TET) which contains four hydrocarbon rings using cyclic voltammetry (CV) technique via modification of the working electrode of the SPCE with the prepared nanomaterial by deposition process. f-MWCNT-GOT/SPCE nanocomposite showed higher electrochemical reaction response and lower limit of detection. The working electrodes surfaces were studied with AFM and SEM techniques. The value of apparent heterogeneous electron transfer rate constant (ks) was determined using the value of electron transfer coefficient (α) and the result showed that f-MWCNT-GOT/SPCE showed higher (ks).
Condensation of 4-methoxybenzoyl hydrazine with 4- aminobenzoic acid in the presence of POCl3 gave the oxadiazole derivative [III] .This compound was demethylated with aluminium chloride to give series of 2- (4-hydroxy phenyl)-5-(4-amino phenyl)
1,3,4-oxadiazole [IV]. Series of Schiff s bases [V]n were synthesized by the condensation of compound [IV] with 4-n-alkoxy benzaldehyde in the presence of glacial acetic acid. Condensation of compounds [VI]n. with adipoyl chloride in dry pyridine leads to the formation of a new homologous series [VI]n. The structures of the synthesized compounds were confirmed by physical and spectral means The new compounds [VI]n have been screened for their antibacterial activities . The results
Polyacetal was synthesized from the reaction of Polyethylene glycol with4- dimethylaminobenzaldehyde.Polymer metal complex was synthesized by the reaction with Ag+; polymer blend with polyvinyl alcohol was synthesized solution casting technique. All synthesized compounds were characterized by FT-IR in addition to the antimicrobial activity. The FT-IR spectra indicate the formation of the polyacetal. The DSC resultsindicatethe thermal stability regarding the synthesized polymer blends. The synthesized polyacetal, its metal complex and PA blend against four types of bacteria (gram+ve) Staphylococcus aureas, Bacillus subtilis and (gram –ve)Klebsiella pneumoniae, Escherichia Coli w
... Show MoreVarious types of heterogeneous five membered rings were prepared from the reaction of the compound chloro Di Fluro acetic acid with Schiff bases (which was prepared using different Aldehydes, Ketones, and amines [H10-H1] and five membered rings were prepared (derivatives of Oxazolidine-5-one, and the presence of Tetrahydrofuran (THF) [H20-H11]. Melting points of the compounds were measured. The prepared compounds were diagnosed spectrally by using UV-Visible and Infrared spectroscopy, and (1H-NMR) Spectrum for some compounds. The results confirmed the validity of the proposed chemical compositions
4-[(2-hydroxy-4,6-dimethylphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one has been readied by combination the diazonium salt of 4-aminoantipyrine with 3,5-dimethylphenol. Spectral studies ( FTIR, UV-Vis, 1H and 13CNMR) and microelemental analysis (C.H.N) are use to identified of the ligand. Complexes of some transition metals were performed as well depicted. The formation of complexes were characterized by using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4 - 3×10-4 M/L). height m
... Show MoreThe formation and structural investigation of three new Mannich bases are reported. The synthesis of these compounds was accomplished via a multicomponent one-pot reaction using CaCl2 as a catalyst. The reaction of the benzaldehyde, m-bromoaniline and cyclohexanone or 4-methylcyclohexanone resulted in the formation of L1 and L3, respectively. The synthesis of L2 was achieved by mixing benzaldehyde, o-bromoaniline and cyclohexanone. The isolated compounds were characterised using a range of analytical and spectroscopic techniques. These include; NMR (1H and 13C-NMR), ESMS, FTIR, electronic spectroscopy, microanalyses and melting points. The NMR data for L1 and L2 indicated the presence of one isomer in solutions, on the NMR time scale. How
... Show MoreA novel series of chitosan derivatives were synthesized via reaction of chitosan with carbonyl compounds and grafted it’s by with different amine compounds substituted hydrogen. The produced polymers were characterized by different analyses FTIR, 1HCNMR, XRD, DSC and TGA. Solubility in water as well as many solvent was investigated, antibacterial activity of chitosan and its derivatives against two types of bacteria E. coli and S. aureus was also investigated. The results showed that derivatives sort of have antibacterial activities against Esherichia coli (Gram negative) better than chitosan whilst compound IX has better antibacterial against Staphylococcus aureus (Gram positive). SEM analysis showed that increase of surface roughness wi
... Show MoreMetal (III) and (II) coordination compounds of o- phenylenediamine, oxalic acid dihydrate and 8-hydroxyquinoline were synthesized for mixed ligand complexes and characterized using FT-IR, UV-Vis and mass spectra, atomic absorption, elemental analysis, electric conductance and magnetic susceptibility measurements. In addition, thermal behavior (TGA) of the metal complexes (1-6) showed good agreement with the formula suggested from the analytical data. The stoichiometric reaction between the metal (III) and (II) ions with three various ligands in molar ratio at aqueous ethyl alchol for (1:1:1:1) (M: O-PDA: OA: 8-HQ) [where M = Cr+3, Mn+2, Co+2, Ni+2. Cu+2 and Zn+2; O-PDA = O-Phenylenediamine; OA = Oxalic acid and 8-HQ = 8-Hydroxyquinoline]. R
... Show MoreBackground: Isoxazoles are an important class of five-membered unsaturated heterocyclic compounds. They show several applications in diverse areas such as pharmaceuticals, agrochemistry and industry. Isoxazoles are also found in natural sources showing insecticidal, plant growth regulation and pigment functions. Current study was conducted for synthesis of twenty five new Isoxazole derivatives and to evaluate the in vitro antibacterial activities of these derivatives. Methods: Benzaldoxime and their substituted [I] ae were prepared via addition-elimination reactions between aromatic aldehyde and hydroxylamine hydrochloride. In a second step, para-or meta-substituted benzaldoximes [I] ae were reacted with N-chlorosucceinimide in DMF to yield
... Show More