A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreUnderstanding breaking news necessitates a special attention, since they are written with a special style. The study aims at identifying the difficulties faced by the Iraqi university EFL learners in comprehending English breaking news. The study included 10 fourth year students enrolled at the Department of English, College of Education for Humanities, University of Anbar. Thus, a questionnaire as a research instrument, was sent online to the students. The questionnaire points were related to the identification of difficulties faced by the learners in comprehending English breaking news. The data of the study were (10) headlines selected purposively from Euronews website. The data were qualitatively analyzed based on quantifying the qua
... Show MoreThe developments in forensic DNA technology have led us to perform this study in Iraqi population as reference database of autosomal Short Tandem Repeat (aSTR) DNA markers . A total of 120 unrelated individuals from Wasit province were analyzed at 15 STR DNA markers. Allele frequencies of DNA typing loci included in the AmpFlSTR1 IdentifilerTM PCR Amplification Kit panel from Applied Biosystems (D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, TH01, TPOX, CSF1PO, D19S433, D2S1338, D16S539) and several forensic efficiency statistical parameters were estimated from all the sample. the combined Matching Probability (CMP) using the 15 STR genetic loci in Iraqi population was estimated at 1 in 2.08286E-18 and the Combined
... Show MoreIncremental sheet forming (ISF) process offers a high degree of flexibility in the manufacturing of different sheet parts, which makes it an ideal candidate for prototype parts as well as efficient at fabricating various customized products at low production costs compared to traditionally used processes. However, parts produced in this process exhibit notable geometrical inaccuracy and considerable thickness reduction. In this paper, the single point incremental sheet forming variant of the process has been implemented to manufacture a highly customized cranial implant starting from the computed tomography (CT) scan data of the patient's anatomy. A methodology, from the modeling to the realization of the implant, is presented and discus
... Show MoreE-Learning packages are content and instructional methods delivered on a computer
(whether on the Internet, or an intranet), and designed to build knowledge and skills related to
individual or organizational goals. This definition addresses: The what: Training delivered
in digital form. The how: By content and instructional methods, to help learn the content.
The why: Improve organizational performance by building job-relevant knowledge and
skills in workers.
This paper has been designed and implemented a learning package for Prolog Programming
Language. This is done by using Visual Basic.Net programming language 2010 in
conjunction with the Microsoft Office Access 2007. Also this package introduces several
fac
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show More