Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research work in this topic. Finally, it compiles and classifies various objective functions, the core of the evolutionary algorithms, from the related collection of research papers. The paper ends up by addressing some important issues and challenges that can be subject of future work.
This study is qualitative, it illustrates H.G. Wells\\'s The Time Machine through the scientific and social framework of the Victorian Era. Wells\\'s portrayal of future societies examines the rapid technological progress and social changes of the 19th century. The analysis scrutinizes the division between the Eloi and the Morlocks, tracing the consequences of social division. To meet the objective of the study, Victorian frame of mind is utilized to examine the class struggle that is symbolized by the Eloi and the Morlocks. The analysis highlights the economic and social effects of industrialization and how Wells examines the capitalist system and its impact on human relationships and class division. The study also utilizes concepts from D
... Show MoreThis study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreWe report herein an innovative approach to prostate tumor therapy using tumor specific radioactive gold nanoparticles (198Au) functionalized with Mangiferin (MGF). Production and full characterization of MGF-198AuNPs are described. In vivo therapeutic efficacy of MGF-198AuNPs, through intratumoral delivery, in SCID mice bearing prostate tumor xenografts are described. Singular doses of the nano-radiopharmaceutical (MGF-198AuNPs) resulted in over 85% reduction of tumor volume as compared to untreated control groups. The excellent anti-tumor efficacy of MGF-198AuNPs are attributed to the retention of over 90% of the injected dose within tumors for long periods of time. The retention of MGF-198AuNPs is also rationalized in terms of the higher
... Show MoreThe detection of diseases affecting plant is very important as it relates to the issue of food security, which is a very serious threat to human life. The system of diagnosis of diseases involves a series of steps starting with the acquisition of images through the pre-processing, segmentation and then features extraction that is our subject finally the process of classification. Features extraction is a very important process in any diagnostic system where we can compare this stage to the spine in this type of system. It is known that the reason behind this great importance of this stage is that the process of extracting features greatly affects the work and accuracy of classification. Proper selection of
... Show More