Nowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polarization) and a linearly polarized light at 45º/−45º of 97% and a 98%, respectively. Furthermore, we obtained almost a 3-fold enhancement of the total decay rate of the QE with high emission coupling efficiency (β-factor) of 88%, 80%, and 87% to the corresponding waveguide mode for 0º, 45º/−45º, and 90º, respectively. Our work paves the way towards more efficient, compact, and less complicated on-chip plasmonic single-photon sources with a specified output polarization.
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show MoreIn this study, the harvest of maize silage with the cross double row sowing method were tested with a single row disc silage machine in two different PTO applications (540 and 540E min-1) and at two different working speeds v1, v2 (1.8 and 2.5 km h-1). The possibilities of harvesting with a single row machine were revealed, and performance characteristics such as hourly fuel consumption, field-product fuel consumption and PTO power consumption were determined in the trials. The best results in terms of hourly fuel consumption and PTO power consumption were determined in the 540E PTO application and V1 working speed. When the fuel consumption of the field-product is evaluated, it is obtained with V2 working speed and 540E PTO application. As
... Show MorePollutants generation is strongly dependant on the firing temperature and reaction rates of the gaseous reactants in the gas turbine combustion chamber. An experimental study is conducted on a two-shaft T200D micro-gas turbine engine in order to evaluate the impact of injecting ethanol directly into the compressor inlet air on the exhaust emissions. The study is carried out in constant speed and constant load engine tests. Generally, the results showed that when ethanol was added in a concentration of 20% by volume of fuel flow; NOx emission was reduced by the half, while CO and UHC emissions were almost doubled with respect to their levels when burning conventional LPG fuel alone.
Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discrimina
... Show MoreThe application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the
... Show More