Preferred Language
Articles
/
iBZYrIoBVTCNdQwCY6Ig
Wireless Optimization Algorithm for Multi-floor AP deployment using binary particle swarm optimization (BPSO)
...Show More Authors
Abstract<p>Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal thresholds, and Received Signal Strength (RSS) measurements simulated with Wireless Insite (WI) software were considered to work in conjunction with the proposed optimization algorithm. Additionally, the AP deployment results obtained from WI and optimization will be compared with the simulation results of the current AP diffusion within the target building. These comparisons will be based on the most important RSS parameters, path loss (PL) and interference. The comparison results showed a significant improvement in RSS and path loss values of (-11.55) dBm and (11.55) dBm. While the interferences are decreased by (7.87 %). Furthermore, the result of performance analysis showed that the proposed algorithm outperforms the current AP deployment by 39.23% in coverage ratio.</p>
Scopus Crossref
View Publication
Publication Date
Sat Sep 27 2014
Journal Name
Soft Computing
Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks
...Show More Authors

View Publication
Scopus (30)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Aip Conference Proceedings
Application of simulated annealing to solve multi-objectives for aggregate production planning
...Show More Authors

Aggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Advanced GIS-based Multi-Function Support System for Identifying the Best Route
...Show More Authors

Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Approximated Solution for The Nonlinear Second Order Delay Multi-Value Problems
...Show More Authors

This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Chilean Journal Of Statistics
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Aug 07 2020
Journal Name
Key Engineering Materials
The Effect of Particle Size Distribution on some Properties of Gypsum
...Show More Authors

Gypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Studia Ubb Chemia,
EXCESS AND DEVIATIONS PROPERTIES FOR THE BINARY SOLVENT MIXTURES OF TETRAHYDROFURFURYL ALCOHOL WITH SOME AROMATIC HYDROCARBONS AT 298.15 K.
...Show More Authors

In this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister

... Show More
View Publication
Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Proceedings Of The 5th International Conference On Information Systems Security And Privacy
Identification and Extraction of Digital Forensic Evidence from Multimedia Data Sources using Multi-algorithmic Fusion
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref