Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
Relying on modern work strategies, such as adopting scientific inductions, consolidates the information in the learner’s memory, develops the skill work of the football player, and raises the efficiency of their motor abilities. From this standpoint, the researcher, who is a teacher at the University of Baghdad, College of Physical Education and Sports Sciences, and follows most of the sports club teams in youth football, believes that there must be From extrapolations through the machine and employing it in the field to serve the skill aspect and benefit from scientific technology in development and making it a useful tool to serve the sports field in football, as the goal of the research was the efficiency of machine extrapolation in de
... Show MoreThe current study was designed to investigate the occurrence of aflatoxin B1 in thirty two samples of fish feedstuff were collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin B1 was detected in thirty samples and the concentration of toxin ranged from 50 ppb to 1000 ppb.
Microwave and ozone were used for detoxification of aflatoxin B1 from sample with highest concentration (1000 ppb), two degree of temperature and two times (50°C and 100°C for 5 minute and 10 minute to each degree) of microwave, also two doses and two times (2 g and 4 g for 5 minute and 10 minute to each dose) of ozone gas were used.
Degradation of aflatoxin B1 by
... Show MoreLet G be a graph, each edge e of which is given a weight w(e). The shortest path problem is a path of minimum weight connecting two specified vertices a and b, and from it we have a pre-topology. Furthermore, we study the restriction and separators in pre-topology generated by the shortest path problems. Finally, we study the rate of liaison in pre-topology between two subgraphs. It is formally shown that the new distance measure is a metric
The notion of presupposition has been tackled by many linguists. They have found that the term ―presupposition” is being used in two different senses in the literature: semantic and pragmatic. As for semantic sense, Geurts (1999) has isolated some constrictions as sources of presupposition by making lists of presupposition triggers. Concerning the pragmatic sense Kennan (1971:89) uses the term pragmatic presupposition to refer to a class of pragmatic inferences which are, in fact, the relation between a speaker and the appropriateness of a sentence in the context. In spite of the fact that there are many researches that have been done in the field of presupposition but few of them in the field of short stories up to the researcher's kno
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show MoreA set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v
... Show More