Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibility of the CO2-AGD process without any bottom water drives, it was first used. The experimental results demonstrated that existence of bottom water drive affected oil recoveries due to pressure support. Oil recovery before gas breakthrough increases proportionally with bottom water drive intensity. The gas breakthrough time recoveries for CO2-AGD1, CO2-AGD2, and CO2-AGD3 runs were 38.68%, 50.70%, and 60.85% of OOIP. The pressure gradient along the physical model decreases as bottom water drive intensity increases. The CO2-AGD approach delayed gas breakout by 72 min. As aquifer strength increases, gas breakthrough is delayed. In the three CO2-AGD runs and after breakthrough occurrence, the injector-producer pressure difference decreased due to the residual heads of oil and water columns above the horizontal well. As long as oil and water exist in the model, the pressure differential will not be zero, and the relative permeability and capillary trapping also control this phenomenon. Finally, it was demonstrated that there is a direct correlation between the strength of the aquifer and the oil recovery factor. The strength of the aquifer positively affects the oil recovery at breakthrough and the ultimate oil recovery.
Waste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show MoreThe main objective of this study is to introduce a systematic design procedure for short-span segmental beams following a sophisticated ACI 440.2R-17 design procedure. The general aspects of innovative short-span segmental beams are easy to fabricate, economical and rapidly placed in pre-specified positions. Short-span segmental beams fabricated from individual precast plain-concrete blocks and CFRP plates. Recently, experimental tests performed on short-span segmental beams, by the authors, investigated CFRP plate-bonding, CFRP plate cross-sectional area, the thickness of plate-bonding epoxy resin, surface-to-surface condition of concrete blocks, as well as, interface condition of the bonding surface. The experimental program comprises tes
... Show MoreThe thermal degradation of cable ties of polyamide (PA6,6) neat and UV stabilized was investigated by thermogravimetry (TG) and its derivative (DTG) at several heating rates between 5 and 80 oC min-1 in helium atmosphere. High heating rates signal novel peaks in the DTG curves that indicate melting temperature of PA6,6. The kinetic parameters calculated via isoconversion and nonisothermal data using the Flynn-Wall-Ozawa, Kissinger and CoatsRedfern methods showed comparable activation energy values. Exposure of the ties to outdoor environment causes pre-mature stress cracking and brittle failure due to prevalence of crosslinking reaction occurring in the polymer chains
In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreObjective: Assess type 2 diabetic patients’ knowledge regarding preventive measures of diabetic foot. Find out the relationship between of type 2 diabetic patients’ knowledge regarding preventive measures of diabetic foot with certain sociodemographic characteristics
Methodology: A descriptive study was carried out from (2nd January 2022 to 26th March 2022). A non –probability (purposive) sample of (60) adult patients who are diagnosed with type2 diabetes mellitus these patients have met the study criteria which was selected from Imam AL-Hussein Medical-City. The study instrument consist of two section: (Demographic Information Sheet, and Foot Care Outcome Expectation
... Show MoreAbstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreThe different parameters on mechanical and microstructural properties of aluminium alloy 6061-T6 Friction stir-welded (FSW) joints were investigated in the present study. Different welded specimens were produced by employing variable rotating speeds and welding speeds. Tensile strength of the produced joints was tested at room temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and analyzed by means of brinell hardness number . Besides to thess tests the bending properties investigat
... Show MoreThe removal of chlorpyrifos pesticide from aqueous solutions was achieved by adsorption using low cost agricultural residue as adsorbent surface; barley husks. Several variables that affect the adsorption were studied including contact time, adsorbent weight, pH, ionic strength, particle size and temperature. The absorbance of the solution before and after adsorption was measured by using UV-Visible spectrophotometer. The equilibrium data was suitable with Langmuir model of adsorption and the linear regression coefficient R2 = 0.9785 at 37.5°C was used to knowledge the best fitting isotherm model. The general shape of the adsorption isotherm of chlorpyrifos on barley husks consistent with (H3-type) on the Giles classification. Several
... Show More