Ultrasound is a mechanical energy which can generate altering zones of compression and rarefaction along its path in the tissues. Ultrasound imaging can provide a real time screening for blood and multiple organs to aiding the diagnostic and treatment. However, ultrasound has the potential to deposit energy in the blood and tissues causing bio effects which is depending on ultrasound characteristics that including frequency and the amount of intensity. These bio effects include either a stable cavitation presented non thermal effects or inertial cavitation of harmful effect on the tissues. The non-thermal cavitation can add features in diagnostic imaging and treatment more than the inertial cavitation. Ultrasound Contrast agents are a microbubble of high scattering signals that are well developed and injected intravenously to obtain good contrast image among tissues which have very low difference in their acoustic impedance. The fundamental of this review is to summarize the physics concepts of ultrasound in medical imaging in relation to the stimulation of cavitation phenomena, whether it is free formation or encapsulated microbubbles in connected to the physical parameters that regulate the degree of bio effects, mechanical index and their role in introducing a contrast image to improve the medical diagnostic.
Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreDeep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show MoreBackground: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan
... Show MoreThe goal of the research is to theoretically establish the variable of brilliant leadership and explain the importance of this variable and the philosophical orientation of researchers in taking it as an original variable in their research as an independent variable. The descriptive approach and theoretical framing of brilliant leadership were followed. We relied on secondary data represented by books, dissertations, dissertations, scientific research, and the information network (the Internet) as a tool for collecting data. The scientific value was represented by the importance of consolidating brilliant leadership and reviewing the most important things that were confirmed by the research and studies that dealt with this research.
... Show MoreThe purpose of this article is to provide a comprehensive definition of corporate governance and to review the existing literature on the subject. The researchers examine various corporate governance theories, including agency theory, stakeholder theory, and resource-based theory. The study concludes by emphasizing that the primary goal of corporate governance theories is not to examine how managers govern but rather to analyze how governance operates in an company.
The derivatives formed after the successive acetylation, esterification and nitration reactions to cholic, deoxycholic, and taurocholic acids were identified to be of the following general strucure: Colt, Where RI=NO3, OH, 0=, or CH3COO. R2=H, NO3, OH, 0-=, or CH3COO. R3=H, NO3,01-1, 0=, or CH3COO. R4=OH, NH(CH2)2S03Na, NH(CH2)2S03H, or OMe. By using U.V-visible and I.R spectrophotometry . The number of hydroxyl groups was determined, purity was checked from T.L.C, Most of these derivatives will find pharmaceutical application.
The use of antibiotics without prescription (self-medication) is growing globally and is associated with increased bacterial resistance, ineffective treatment and adverse reactions. This study aimed at assessing the practice of antibiotic self-medication in the Iraqi population. A cross-sectional study design was adopted in this work. The sample was comprised of 303 staff members from the non-medical colleges in Iraq. An online questionnaire was distributed between the 29th of June to the 14th of September 2021 to collect data including socio-demographic characteristics and questions about antibiotic self-medication. Most of the participants had a university degree and a moderate monthly income. The majority (88%) h
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreMetal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show More