Ultrasound is a mechanical energy which can generate altering zones of compression and rarefaction along its path in the tissues. Ultrasound imaging can provide a real time screening for blood and multiple organs to aiding the diagnostic and treatment. However, ultrasound has the potential to deposit energy in the blood and tissues causing bio effects which is depending on ultrasound characteristics that including frequency and the amount of intensity. These bio effects include either a stable cavitation presented non thermal effects or inertial cavitation of harmful effect on the tissues. The non-thermal cavitation can add features in diagnostic imaging and treatment more than the inertial cavitation. Ultrasound Contrast agents are a microbubble of high scattering signals that are well developed and injected intravenously to obtain good contrast image among tissues which have very low difference in their acoustic impedance. The fundamental of this review is to summarize the physics concepts of ultrasound in medical imaging in relation to the stimulation of cavitation phenomena, whether it is free formation or encapsulated microbubbles in connected to the physical parameters that regulate the degree of bio effects, mechanical index and their role in introducing a contrast image to improve the medical diagnostic.
In this paper, a simple medical image compression technique is proposed, that based on utilizing the residual of autoregressive model (AR) along with bit-plane slicing (BPS) to exploit the spatial redundancy efficiently. The results showed that the compression performance of the proposed techniques is improved about twice on average compared to the traditional autoregressive, along with preserving the image quality due to considering the significant layers only of high image contribution effects.
The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreThis comprehensive review examines the efficacy and safety of tumor necrosis factor-alpha (TNF-α) inhibitors in treating various autoimmune diseases, and focuses on their application in Iraqi patients. Elevated TNF-α levels are linked to autoimmune disorders, leading to the development of anti-TNF-α therapies such as infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab, which have gained FDA approval for conditions like psoriasis, in¬flammatory bowel disease, ankylosing spondylitis, and rheumatoid arthritis. While these therapies demonstrate sig¬nificant therapeutic benefits, including improved quality of life and disease management, they also carry risks, such as increased susceptibility to infections and pote
... Show MoreBackground: Bone marrow aspiration (BMA) and biopsy is a procedure that is used to evaluate the cause of abnormal blood test results, to confirm a diagnosis or check the status of severe anemia of unknown cause, to evaluate abnormalities in the blood's ability to store iron and also to diagnose infection.
Objectives: To identify the main indications of bone marrow aspiration and the most common diagnoses encountered in children welfare teaching hospital.
Patients and methods: This was a prospective and retrospective descriptive study over 6- month period from 8th of February 2010 to 8th of August 2010 in children younger than 14 years. All bone marrow aspirate results wer
... Show MoreBackground: Tumor necrosis factor-alpha (TNF-α) and interleukins play important roles in the pathogenesis of rheumatoid arthritis (RA). Genetic research has been employed to find many of the missing connections between genetic risk variations and causal genetic components. Objective: The goal of this study is to look at the genetic variations of TNF-α and interleukins in Iraqi RA patients and see how they relate to disease severity or response to biological therapy. Method: Using specific keywords, the authors conducted a systematic and comprehensive search to identify relevant Iraqi studies examining the genetic variations of TNF-α and interleukins in Iraqi RA patients and how they relate to disease severity or response to biolo
... Show MoreThe friendly-environment geophysical methods are commonly used in various engineering and near-surface environmental investigations. Electrical Resistivity Imaging technique was used to investigate the subsurface rocks, sediments properties of a proposed industrial site to characterize the lateral and vertical lithological changes. via the electrical resistivity, to give an overview about the karst, weak and robust subsoil zones. Nineteen 2D ERI profiles using Wenner array with 2 m electrode spacing have been applied to investigate the specific industry area. One of these profiles has been conducted with one-meter electrode spacing. The surveyed profiles are divided into a number of blocks, each block consists of several parallel pr
... Show MoreWe report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (
The current research demonstrates the ERI method's effectiveness as a supplementary engineering site investigation approach. Engineering site research is important to indicate the subsoil of proposed production sites. The benefit of the dipole-dipole array for ERI electrical resistivity imaging is that it provides informative records of subsurface geology and condition along with profiles. The dipole-dipole array was performed along with three parallel profiles at the Diyala University site to identify the buried facilities (pipes and cables) in the area. The buried electric cable embedded in a plastic tube was used for simulation to report and verify the field resistivity results. Interpretation of field facts confirmed that
... Show MoreThe beginning of COVID-19 in Wuhan, China in late December 2019 and its worldwide transmission has led the World Health Organization to formally address the pandemic. The pandemic has imposed influential impacts on different environmental, economic, social, health, and living aspects. Publishing in scholastic journals was not immune from these impacts.
Bacteriological characteristics of Tigris river water were assessed monthly to monitor the impact of pollutants of Medical City waste water for the period from January to June-2013. Four stations were selected for the study, the first station placed before the Medical City Complex (500 meters). The second station represent Medical City sewage discharge into the river, where represents the study area. The third station placed (500 meters) after the second station, and the forth station is located on (2000 meters) after the second station.
Samples collected monthly to monitor the changes of water indicators showed that: Total Bacterial Count (10000 to 2700000 cells/1 ml), Total Coliform (200-3700 cells/100 ml), Fecal Coliform (100-2400