Preferred Language
Articles
/
hxb4BIcBVTCNdQwCJS37
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Apr 01 2019
Journal Name
2019 International Conference On Automation, Computational And Technology Management (icactm)
Multi-Resolution Hierarchical Structure for Efficient Data Aggregation and Mining of Big Data
...Show More Authors

Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Wed Oct 30 2019
Journal Name
Cambridge Scholars Publishing.
Intelligent systems in building;
...Show More Authors

Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy logic in the estimate of reliability function for k - components systems
...Show More Authors

Abstract:

One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
The Investigation of Monitoring Systems for SMAW Processes
...Show More Authors

The monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 18 2010
Journal Name
Spe Projects, Facilities & Construction
Correlating Optimum Stage Pressure for Sequential Separator Systems
...Show More Authors
Summary<p>A study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.</p><p>A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t</p> ... Show More
View Publication
Scopus (15)
Crossref (14)
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Lecture Notes In Computer Science
Constrained Differential Evolution for Cost and Energy Efficiency Optimization in 5G Wireless Networks
...Show More Authors

The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 22 2020
Journal Name
2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies (ismsit)
Artificial Intelligence in Smart Agriculture: Modified Evolutionary Optimization Approach for Plant Disease Identification
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model
...Show More Authors

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
Symmetric and Positive Definite Broyden Update for Unconstrained Optimization
...Show More Authors

Broyden update is one of the one-rank updates which solves the unconstrained optimization problem but this update does not guarantee the positive definite and the symmetric property of Hessian matrix.

In this paper the guarantee of positive definite and symmetric property for the Hessian matrix will be established by updating the vector  which represents the difference between the next gradient and the current gradient of the objective function assumed to be twice continuous and differentiable .Numerical results are reported to compare the proposed method with the Broyden method under standard problems.

View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref