Preferred Language
Articles
/
hxb4BIcBVTCNdQwCJS37
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jul 01 2023
Journal Name
International Journal Of Intelligent Engineering And Systems
An Efficient Cryptosystem for Image Using 1D and 2D Logistic Chaotic Maps
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
A new smart approach of an efficient energy consumption management by using a machine-learning technique
...Show More Authors

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s

... Show More
Crossref
Publication Date
Mon Jan 10 2022
Journal Name
Iraqi Journal Of Science
Genetic Algorithm based Clustering for Intrusion Detection
...Show More Authors

Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Modified Light Stemming Algorithm for Arabic Language
...Show More Authors

Stemming is a pre-processing step in Text mining applications as well as it is very important in most of the Information Retrieval systems. The goal of stemming is to reduce different grammatical forms of a word and sometimes derivationally related forms of a word to a common base (root or stem) form like reducing noun, adjective, verb, adverb etc. to its base form. The stem needs not to be identical to the morphological root of the word; it is usually sufficient that related words map to the same stem, even if this stem is not in itself a valid root. As in other languages; there is a need for an effective stemming algorithm for the indexing and retrieval of Arabic documents while the Arabic stemming algorithms are not widely available.

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 26 2022
Journal Name
Iraqi Journal Of Science
New Class of Rank 1 Update for Solving Unconstrained Optimization Problem: New Class of Rank 1 Update for solving Unconstrained Optimization Problem
...Show More Authors

     The focus of this article is to add a new class of rank one of  modified Quasi-Newton techniques to solve the problem of unconstrained optimization by updating the inverse Hessian matrix with an update of rank 1, where a diagonal matrix is the first component of the next inverse Hessian approximation, The inverse Hessian matrix is  generated by the method proposed which is symmetric and it satisfies the condition of modified quasi-Newton, so the global convergence is retained. In addition, it is positive definite that  guarantees the existence of the minimizer at every iteration of the objective function. We use  the program MATLAB to solve an algorithm function to introduce the feasibility of

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Phylogenetic tree analysis based on the 16S sequence alignment for Klebsiella spp. isolated from different sources
...Show More Authors

16S ribosomal RNA (16S rRNA) gene sequences used to study bacterial phylogeny and taxonomy have been by far the most common housekeeping genetic marker utilized for identification and ancestor determination. This study aimed to investigate, for the first time, the relationship between Klebsiella spp. isolated from clinical and environmental samples in Iraq.

Fifty Klebsiella spp. isolates were isolated from clinical and environmental sources. Twenty-five isolates were collected from a fresh vegetable (Apium graveolens) and 25 from clinical samples (sputum, wound swab, urine). Enteric bacteria were isolated on selective and differential media and identified by an automatic identification system, vitek-2.

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
Phylogenetic tree analysis based on the 16S sequence alignment for Klebsiella spp. isolated from different sources
...Show More Authors

16S ribosomal RNA (16S rRNA) gene sequences used to study bacterial phylogeny and taxonomy have been by far the most common housekeeping genetic marker utilized for identification and ancestor determination. This study aimed to investigate, for the first time, the relationship between Klebsiella spp. isolated from clinical and environmental samples in Iraq.

     Fifty Klebsiella spp. isolates were isolated from clinical and environmental sources. Twenty-five isolates were collected from a fresh vegetable (Apium graveolens) and 25 from clinical samples (sputum, wound swab, urine). Enteric bacteria were isolated on selective and differential media and identified by an automatic identif

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
A comparative Study to calculate the Runs Property in the encryption systems
...Show More Authors

Cryptographic applications demand much more of a pseudo-random-sequence
generator than do most other applications. Cryptographic randomness does not mean just
statistical randomness, although that is part of it. For a sequence to be cryptographically
secure pseudo-random, it must be unpredictable.
The random sequences should satisfy the basic randomness postulates; one of them is
the run postulate (sequences of the same bit). These sequences should have about the same
number of ones and zeros, about half the runs should be of length one, one quarter of length
two, one eighth of length three, and so on.The distribution of run lengths for zeros and ones
should be the same. These properties can be measured determinis

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Scienceasia
A combined compact genetic algorithm and local search method for optimizing the ARMA(1,1) model of a likelihood estimator
...Show More Authors

In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
An Evolutionary Bi-clustering Algorithm for Community Mining in Complex Networks
...Show More Authors

A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optim

... Show More
View Publication Preview PDF