Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.
Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreIn this review, numerous analytical methods to distinguish pigments in tattoo, paint, and ink items are discussed. The selection of a method was dependent upon the purpose, e.g., quantification or identification of pigments. The introductory part of this review focuses on describing the importance of setting up a pigment-associated safety profile. The formation of different degradation chemical substances as well as impurity trends can be indicated through the chemical investigation of pigments in tattoo products. It is noteworthy that pigment recognition in tattoo inks can work as a preliminary method to identify the pigments in a patient's tattoo before being removed by laser therapy. Contrary to the stud
Earth dams are constructed mainly from soil. A homogenous earth dam is composed of only one material. The seepage through such dams is quite high. Upstream impervious blanket is one of the methods used to control seepage through the dam foundations. Bennet's method is one of the commonly used methods to design an impervious upstream blanket. Design charts are developed relating the length of blanket, total reservoir head, total base width of the dam (excluding downstream drainage), the coefficient of permeability of the blanket material, blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil, based on the equations governing the Bennet's method for a homogenous earth dam with a blanket of uniform
... Show MoreObjective: To identification environmental and psychological violence's components among collegians’ students of different stages, and gender throughout creating specific questionnaire, and estimating regression of environmental domain effect on psychological domain, as well as measuring powerful of the association contingency between violence's domains in admixed form with respondent characteristics, such that (Demographics, Economics, and Behaviors), and extracting model of estimates impact of studied domains in studying risks, and protective factors among collegians’ students in Baghdad city. Methodolog
International companies are striving to reduce their costs and increase their profits, and these trends have produced many methods and techniques to achieve these goals. these methods is heuristic and the other Optimization.. The research includes an attempt to adapt some of these techniques in the Iraqi companies, and these techniques are to determine the optimal lot size using the algorithms Wagner-Whitin under the theory of constraints. The research adopted the case study methodology to objectively identify the problem of research, namely determining lot size optimal for each of the products of electronic measurement laboratory in Diyala and in light of the bottlenecks in w
... Show More