We present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current. Moreover, the transition energy of N3/TiO2 and N3/ZnO devices have been slightly increase with increase dielectric constant and decrease refractive index. The data show that charge transfer current increases with decrease all parameters transition energy, potential and driving energy. It was show the charge transfer current is large for low driving energy ΔFE0∼0.3 eV. Consequently, the N3/TiO2 device has given large charge current compare with N3/ZnO device in room temperature with same solvent and driving energy.
The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables
The azo dye brilliant reactive red K-2BP (λmax = 534 nm) is widely used for coloring textiles because of its low-cost and tolerance fastness properties. Wastewaters treatment that contains the dye by conventional ways is usually inadequate due to its resistance to biological and chemical degradation. During this study, the continuous reactor of an advanced oxidation method supported the use of H2O2/sunlight, H2O2/UV, H2O2/TiO2/sunlight, and H2O2/TiO2/UV for decolorization of brilliant reactive red dye from the effluent. The existence of an optimum pH, H2O2 concentration, TiO2 concentration, and d
... Show MoreThis paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.
In the theoretical part, removal of direct yellow 8 (DY8) from water solution was accomplished using Bentonite Clay as an adsorbent. Under batch adsorption, the adsorption was observed as a function of contact time, adsorbent dosage, pH, and temperature. The equilibrium data were fitted with the Langmuir and Freundlich adsorption models, and the linear regression coefficient R2 was used to determine the best fitting isotherm model. thermodynamic parameters of the ongoing adsorption mechanism, such as Gibb's free energy, enthalpy, and entropy, have also been measured. The batch method was also used for the kinetic calculations, and the day's adsorption assumes first-order rate kinetics. The kinetic studies also show that the intrapar
... Show MoreThis report explores emerging techniques to boost multimedia transfer effectiveness, given the escalating need for improved quality and performance in multimedia interactions. The analysis involves a thorough literature assessment and comparison of present strategies to pinpoint key tendencies and propose novel approaches. The methodology involves examining recent technological enhance ments in video coding standards, quality appraisal methods, and compression tech niques. Specific domains investigated comprise firmware component architectures, 4D indexing structures, and iterative filtering frameworks. The study in addition weighs tradeoffs between video quality, encoding intricacy, and bitrate demands. Key determinations consist of
... Show MoreABSTRACT
Ticagrelor is an orally administered antiplatelet medicine, direct-acting P2Y12-receptor antagonist. Ticagrelor binds reversibly and noncompetitively to the P2Y12 receptor at a site distinct from that of the endogenous agonist adenosine diphosphate (ADP). Inhibition of platelet aggregation stimulated by ADP is a commonly used pharmacodynamic parameter for P2Y12-receptor antagonists.
Ticagrelor is a crystalline powder with an aqueous solubility of approximately 10?g/mL at room temperature.
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MoreAbstract: In the current research the absorption and fluorescence spectrum of Coumarin (334) and Rhodamine (590) in ethanol solvent at different concentration (10-3, 10-4, 10-5) M had been studied. The absorption intensity of these dyes increases as the Concentration increase in addition to that the spectrum was shifted towards the longer wavelength (red shift). The energy transfer process has been investigated after achievement this condition. The fluorescence peak intensity of donor molecule was decrease and its bandwidth will increases on the contrary of the acceptor molecule its intensity increase gradually and its bandwidth decreases as the acceptor concentration increase.