This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while the other eight deep beams were with openings in shear spans and with carbon fiber–reinforced polymer sheet strengthening around opening zones. The opening size was adopted to be 200 × 200 mm dimensions in eight deep beams, while it was considered to be 230 × 230 mm dimensions in the other eight specimens. In eight specimens the opening was located at the center of the shear span, while in the other eight beams the opening was attached to the interior edge of the shear span. Carbon fiber–reinforced polymer sheets were installed around openings to compensate for the cutout area of concrete. Results gained from the experimental test showed that the creation of openings in shear spans affect the load-carrying capacity, where the reduction of the failure load for specimens with the opening but without strengthening may attain 66% compared to deep beams without openings. On the other hand, the strengthening by carbon fiber–reinforced polymer sheets for beams with openings increased the failure load by 20%–47% compared with the identical deep beam without strengthening. A significant contribution of carbon fiber–reinforced polymer sheets in restricting the deformability of deep beams was observed.
Gravity and magnetic data are used to study the tectonic situation of Kut- Dewania- Fajir and surrounding areas in central Iraq. The study includes the using of window method with different spacing to separate the residual from regional anomalies of gravity and magnetic data. The Total Horizontal Derivative (THD) techniques used to identify the fault trends in the basement and sedimentary rocks depending upon gravity and magnetic data. The obtained faults trends from gravity data are (N30W), (N60W) (N80E) and (N20E) and from magnetic data are (N30W), (N70E), (N20E),(N10W),(N40E). It is believed that these faults extend from the basement to the lower layers of the sedimentary rocks except the N60W trend that observed clearly in gravity in
... Show MoreGranular carbon can be used after conventional filtration of suspended matter or, as a combination of filtration - adsorption medium. The choice of equipment depends on the severity of the organic removal problem, the availability of existing equipment, and the desired improvement of adsorption condition.
Design calculations on dechlorination by granular - carbon filters considering the effects of flow rate, pH , contact time, head loss and bed expansion in backwashing , particle size, and physical characteristics were considered assuming the absence of bacteria or any organic interface .
In this research, the preparation of a chemically activated carbon from date stones by using electric and microwave assisted K2CO3 activation was studied. The effect of radiation power, radiation time, and impregnation ratio on the yield and Iodine number on the activated carbons was investigated. The activated carbon characterizations were examined by its surface area, pore structure analysis, bulk density, moisture content, ash content, iodine number, FTIR, and scanning electron microscopy (SEM). The adsorption capacity was also studied by adsorption of fluoroquinolones antibiotics, CIP, NOR, and LEVO, by the prepared activated carbon.
... Show MoreIn Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen
... Show MoreThe Internet of Things (IoT) technology and smart systems are playing a major role in the advanced developments in the world that take place nowadays, especially in multiple privilege systems. There are many smart systems used in daily human life to serve them and facilitate their tasks, such as alarm systems that work to prevent unwanted events or face detection and recognition systems. The main idea of this work is to capture live video using a connected Pi camera, save it, and unlock the electric strike door in several ways; either automatically by displaying a live video connected via USB webcam using a deep learning algorithm of facial recognition and OpenCV or by RFID technology, as well as by detecting abnormal entrance wit
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThis research presents a method for calculating stress ratio to predict fracture pressure gradient. It also, describes a correlation and list ideas about this correlation. Using the data collected from four wells, which are the deepest in southern Iraqi oil fields (3000 to 6000) m and belonged to four oil fields. These wells are passing through the following formations: Y, Su, G, N, Sa, Al, M, Ad, and B. A correlation method was applied to calculate fracture pressure gradient immediately in terms of both overburden and pore pressure gradient with an accurate results. Based on the results of our previous research , the data were used to calculate and plot the effective stresses. Many equations relating horizontal effective stress and vertica
... Show MoreDeep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segme
... Show More