Preferred Language
Articles
/
hoaPrYYBIXToZYALfaOq
Strength compensation of deep beams with large web openings using carbon fiber–reinforced polymer sheets
...Show More Authors

This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while the other eight deep beams were with openings in shear spans and with carbon fiber–reinforced polymer sheet strengthening around opening zones. The opening size was adopted to be 200 × 200 mm dimensions in eight deep beams, while it was considered to be 230 × 230 mm dimensions in the other eight specimens. In eight specimens the opening was located at the center of the shear span, while in the other eight beams the opening was attached to the interior edge of the shear span. Carbon fiber–reinforced polymer sheets were installed around openings to compensate for the cutout area of concrete. Results gained from the experimental test showed that the creation of openings in shear spans affect the load-carrying capacity, where the reduction of the failure load for specimens with the opening but without strengthening may attain 66% compared to deep beams without openings. On the other hand, the strengthening by carbon fiber–reinforced polymer sheets for beams with openings increased the failure load by 20%–47% compared with the identical deep beam without strengthening. A significant contribution of carbon fiber–reinforced polymer sheets in restricting the deformability of deep beams was observed.

Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Effect of Furnace Vacuum Pressure on the Joining Strength of Alumina Bonded Kovar
...Show More Authors

Ceramic to metal joining technique, which was used in this investigation includes the use of active filler alloy as a sandwich between the alumina and kovar alloy for brazing. High purity powdered metals of silver, copper, and additives of titanium were used to prepare the active filler alloy, through compacting the mixed powders and alloying in a furnace with argon atmosphere at the temperature of 800oC for 10 minutes. To use it as an active filler metal, it has been modified to a proper thickness. Two groups of alumina were prepared with different sintering temperatures (1450oC and 1650oC) and each group was tested under atmospheric pressure, vacuum furnace pressure of 2*10-4 torr and vacuum furnace pressure of 2*10-6 torr. All the pro

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
American Journal Of Dentistry
Effect of adhesive materials on shear bond strength of a mineral trioxide aggregate
...Show More Authors

Preview PDF
Scopus (6)
Scopus
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Bioremediation of Soil Contaminated with Diesel using Biopile system
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the a

... Show More
Crossref (3)
Crossref
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Bioremediation of Soil Contaminated with Diesel using Biopile system
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil:

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
STATISTICAL ANALYSIS OF PATIENTS INFECTED WITH CORONAVIRUS USING MANOVA
...Show More Authors

Scopus (1)
Scopus
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Performance Evaluation of Chestnut Nano Particles on Tensile, Impact, Vickers Hardness of Polyester/Glass Fiber Composite
...Show More Authors

       In this study, an industrial source) E-Glass fiber) and a natural source (chestnut filler) were combined to improve the properties of polyesters. Hand-layup technique was applied in this work. Polyester (UPE) were reinforced with E-glass fibers, then reinforced with nano chestnut particles. All composites were prepared with (10% wt.) of E-glass for all prepared sheet and this ratio applied for Nano chestnut composite to preparing nano hybrid composites, Nano chestnut particles were used to reinforce E-glass/UPE composites with weight ratio (3%, 6% and 9% wt.). The evaluated mechanical performances for E-glass/NCSP polyester composite were tensile strength, impact strength and hardness. The higher ultimate tensile strength, Y

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Using One-Class SVM with Spam Classification
...Show More Authors

Support Vector Machine (SVM) is supervised machine learning technique which has become a popular technique for e-mail classifiers because its performance improves the accuracy of classification. The proposed method combines gain ratio (GR) which is feature selection method with one-class training SVM to increase the efficiency of the detection process and decrease the cost. The results show high accuracy up to 100% and less error rate with less number of feature to 5 features.

View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Composites For Construction
Near-Surface-Mounted CFRP for Strengthening Concavely Curved Soffit RC Beams: Experimental and Analytical Investigation
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Polymer Composites
Effect of silver nanoparticles on structural, thermal, electrical, and mechanical properties of poly(vinyl alcohol) polymer nanocomposites
...Show More Authors

View Publication
Scopus (18)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Sat Jun 15 2019
Journal Name
Journal Of The College Of Basic Education
The Effect Of Phoenix Dactylifera L. Pinnae Reinforcement On The Mechanical And Thermal Properties Of Polymer Composite
...Show More Authors

Phoenix dactylifera l. pinnae (the green leaves of dates palm) were used as natural reinforcing (strengthening) fibers to improve the mechanical properties of polyester as a matrix material, the fibers of the green leaves of dates palm were used in two lengths, 10 and 20mm with five rates of 0, 2.5, 5, 10, and 20% , where the reinforcing with the leaves fibers increases the hardness strength from 76.5 to be about 86.55 , the Impact value raised from about 0.313 to 0.461 , in addition to that the flexural strength from 2.66 to be about 55 , and the thermal conductivity increases from 2.54 𝑤∕𝑚.℃ to 5.41 𝑤∕𝑚.℃. The results of the present search explains that the composite samples reinforced at rate 20% and 10mm fiber length

... Show More