This research dealt with study of cladistics taxonomy of five species related to the genus Rumex L. and Polygonum L. from family polygonaceae in Iraq by using Mesquite software V.2.75. This research support strongly delimiting the species P. aviculare L. and P. lapathifolia L.as suggested in floras publication while R. dentatus L. is setted in single group whereas R. vesicarius L. and R. conglomeratus Murray were included in the same group. Also, this study involved characteristics of shape, dimensions, color, and ornamentation of seeds and fruits as the seed forms were ranging from lenticular to trigonous. In terms of size calculations, the seeds of R. vesicarius was recorded the higher range (4.0- 4.5) mm in length while, P. aviculare recorded the lowest (1.5-1) mm in length. However, the shape was lenticular in P. lapathifolia and trigonous in the remaining species. Color of seeds and surface ornamentation is recognized. fruits shape is an important characters in identification of selected species as two groups are distinguished: persistent tubercules tepals which are spine teeth in R. dentatus and tongue like shape in R. conglomeratus, the second group is persistent tepals which are papery in P. lapathifolia, biconvex in P. aviculare and cordate to winged as in R. vesicarius beside that, colors, dimensions and surface nature is also recorded.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe study aims to make an in-depth analysis and the financial account components in the Iraqi balance of payments because it reflects the economic center of the country towards outside world, it also helps in making decision about monetary and financial policies, finance and foreign Trade the importance of FDI for Iraq lies as an important sources as wells provides advanced technology and job chances, It also avoids the country negative effects of borrowing processes from abroad . for analyzing direct and indirect foreign investment on the balance of payments and financial account in a period between (2003 to 2015), a community and research sample have been selected, presented in CBI/ Balance of payments. Department,
... Show MoreThe aesthetic contents of data visualization is one of the contemporary areas through which data scientists and designers have been able to link data to humans, and even after reaching successful attempts to model data visualization, it wasn't clear how that reveals how it contributed to choosing the aesthetic content as an input to humanize these models, so the goal of the current research is to use The analytical descriptive approach aims to identify the aesthetic contents in data visualization, which the researchers interpreted through pragmatic philosophy and Kantian philosophy, and analyze a sample of data visualization models to reveal the aesthetic entrances in them to explain how to humanize them. The two researchers reached seve
... Show MoreSolar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreThe main target of the current study is to investigate the microbial content and mineral contaminants of the imported meat available in the city of Baghdad and to ensure that it is free from harmful bacteria, safe and it compliances with the Iraqi standard specifications. Some trace mineral elements such as (Iron, Copper, Lead, and Cadmium) were also estimated, where 10 brands of these meats were collected. Bacteriological tests were carried out which included (total bacterial count,
A Simple, rapid and sensitive extractive and spectrophotometric method has been described for the analysis of diphenhyldramine –HCl (DPH) in pure form and in pharmaceutical formulations. The method is based on the formation of chloroform soluble ion-pair complex with Bromophenol blue(BPB) in a phthalate buffer at pH 3.0.The extracted complex shows maximum absorbance at 410 nm. Beer's law is obeyed in the concentration range 0.2-25.0 µg.ml-1. The molar absorptivity and Sandell's sensitivity for the system being 2.416x104 L.mol-1.cm-1 and 0.012µg.cm-2, respectively. The limit of detection was found to be 0.155 µg.ml-1. The proposed me
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More