The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
BACKGROUND: Coronavirus current pandemic (COVID-19) is the striking subject worldwide hitting countries in an unexplained non-universal pattern. Bacillus Calmette–Guérin (BCG) vaccine was an adopted recent justification depending on its non-specific immune activation properties. Still the problem of post-vaccine short duration of protection needs to be solved. The same protective mechanism was identified in active or latent tuberculosis (TB). For each single patient of active TB, there are about nine cases of asymptomatic latent TB apparently normal individuals living within the community without restrictions carrying benefits of immune activation and involved in re-infection cycles in an excellent example of repeated immunity tr
... Show MoreThis research aims to investigate the approaches adopted by Iraqi newspapers in addressing the COVID-19 pandemic crisis. Employing a descriptive methodology and survey technique, the study conducts content analysis on articles published in three prominent newspapers: Al-Sabah, Al-Mada, and Tareeq Al-Shaab. A multi-stage sampling method was employed, encompassing 260 issues of the aforementioned newspapers. Data collection involved the use of a content analysis questionnaire, with the "How it was said?" method utilized to determine analysis categories.
The results showed that Al-Sabah newspaper adopted a positive approach in addressing COVID-19-related topics, while Al-Mada newspaper remained neutral, and Tare
The analysis of COVID-19 data in Iraq is carried out. Data includes daily cases and deaths since the outbreak of the pandemic in Iraq on February 2020 until the 28th of June 2022. This is done by fitting some distributions to the data in order to find out the most appropriate distribution fit to both daily cases and deaths due to the COVID-19 pandemic. The statistical analysis includes estimation of the parameters, the goodness of fit tests and illustrative probability plots. It was found that the generalized extreme value and the generalized Pareto distributions may provide a good fit for the data for both daily cases and deaths. However, they were rejected by the goodness of fit test statistics due to the high variability of the data.<
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreBy March 2020, a pandemic had been emerged Corona Virus Infection in 2019 (COVID-19), which was triggered through the sensitive pulmonary syndrome (SARS disease corona virus- 2 (SARS COV-2). Overall precise path physiology of SARS COV-2 still unknown, as does the involvement of every element of the acute or adaptable immunity systems. Additionally, evidence from additional corona virus groups, including SARS COV as well as the Middle East pulmonary disease, besides that, fresh discoveries might help researchers fully comprehend SARS CoV-2. Toll-like receptors (TLRs) serve a critical part in both detection of viral particles as well as the stimulation of the body's immune response. When TLR systems are activated, pro-inflammatory cy
... Show MoreDiabetic retinopathy (DR) is a diabetes- caused disease that is associated with leakage of fluid from the blood vessels into the retina, leading to its damage. It is one of the most common diseases that can lead to weak vision and even blindness. Exudates is a clear indication of diabetic retinopathy, which is the main cause of blindness in people with diabetes. Therefore, early detection of exudates is a crucial and essential step to prevent blindness and vision loss is in the analysis of digital diabetic retinopathy systems. This paper presents an improved approach for detection of exudates in retina image using supervised-unsupervised Minimum Distance (MD) segmentation method. The suggested system includes three stages; First, a
... Show MoreSince the COVID-19 pandemic alarm was made by the severe acute respiratory syndrome (SARS)-coronavirus (CoV) 2, several institutions and agencies have pursued to clarify the viral virulence and infectivity. The fast propagation of this virus leads to an unprecedented rise in the number of cases worldwide. COVID-19 virus is exceptionally contagious that spreads through droplets, respiratory secretions, and direct contact. The enveloped, single-stranded RNA virus has a specific envelop region called (S) region encoding (S protein) that specifically binds to the host cell receptor. Viral infection requires receptors' participation on the host cell membrane's surface, a key- step for the viral invasion of susceptible cells.
Rec
... Show MoreThis paper focuses on choosing a spatial mixture model with implicitly includes the time to represent the relative risks of COVID-19 pandemic using an appropriate model selection criterion. For this purpose, a more recent criterion so-called the widely Akaike information criterion (WAIC) is used which we believe that its use so limitedly in the context of relative risk modelling. In addition, a graphical method is adopted that is based on a spatial-temporal predictive posterior distribution to select the best model yielding the best predictive accuracy. By applying this model selection criterion, we seek to identify the levels of relative risk, which implicitly represents the determination of the number of the model components o
... Show More