The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
Objective: The study the association of procalcitonin (PCT) and c-reactive protein (CRP) levels in COVID-19 patients and it's role as a guide in progress and management of those patients. Methodology: This cross-sectional study analyzed 200 CIOVID-19 patients in a single privet center in Baghdad, Iraq from January 1, 2021 to January 1, 2022. Demographic data like age, sex, and clinical symptoms were recorded. High sensitivity CRP and PCT in the serum were measured via dry fluorescence immunoassay (Lansionbio-China). Results: Out of 200 patients, 50 had moderate Covid and 150 had severe disease. Mean serum PCT levels was 0.039±0.05 ng/mL in the moderate group (range 0.011-0.067) and 0.43±0.21 ng/mL in the severe group (range 0.21
... Show MoreWorldwide, there is an increased reliance on COVID-19-related health messages to curb the COVID-19 outbreak. Therefore, it is vital to provide a well-prepared and authentic translation of English-language messages to reach culturally and linguistically diverse audiences. However, few studies, if any, focus on how non-English-speaking readers receive and linguistically accept the lexical choices in the messages translated into their language. The present study tested a sample of translated Arabic COVID-19-related texts that were obtained from the World Health Organization and Australian New South Wales Health websites. This study investigated to that extent Arabic readers would receive translated COVID-19 health messages and whether the t
... Show MoreBackground: The COVID-19 infection is a more recent pandemic disease all over the world and studying the pulmonary findings on survivors of this disease has lately commenced.
Objective: We aimed to estimate the cumulative percentage of whole radiological resolution after 3 months from recovery and to define the residual chest CT findings and exploring the relevant affecting factors.
Subjects and Methods: Patients who had been previously diagnosed with COVID-19 pneumonia confirmed by RT-PCR test and had radiological evidence of pulmonary involvement by Chest CT during the acute illness were included in the present study. The radiol
... Show MoreThe pandemic of coronavirus disease 2019 (COVID-19), first reported in China, in December 2019 and since then the digestive tract involvement of COVID-19 has been progressively described. In this review, I summed recent studies, which have addressed the pathophysiology of COVID-19-induced gastrointestinal symptoms, their prevalence, and bowel pathological and radiological findings of infected patients. The effects of gut microbiota on SARS-CoV-2 and the challenges of nutritional therapy of the infected patients are depicted. Moreover, I provide a concise summary of the recommendations on the management of inflammatory bowel disease, colorectal cancer, and performing endoscopy in the COVID era. Finally, the COVID pancreatic re
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreIn this paper a decoder of binary BCH code is implemented using a PIC microcontroller for code length n=127 bits with multiple error correction capability, the results are presented for correcting errors up to 13 errors. The Berkelam-Massey decoding algorithm was chosen for its efficiency. The microcontroller PIC18f45k22 was chosen for the implementation and programmed using assembly language to achieve highest performance. This makes the BCH decoder implementable as a low cost module that can be used as a part of larger systems. The performance evaluation is presented in terms of total number of instructions and the bit rate.
This study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe
Objectives: The present study aims at detecting the depression among nurses who provide care for infected patients with corona virus phenomenon and to find out relationships between the depression and their demographic characteristics of age, gender, marital status, type of family, education, and years of experience of nurses in heath institutions, infection by corona virus, and their participation in training courses.
Methodology: A descriptive study is established for a period from October 10th, 2020 to April 15th, 2021. The study is conducted on a purposive (non-probability) sample of (100) nurse who are providing care for patients with COVID-19 and they are selected from the isolation wards. The instrument of the study is develope
Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show More