The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreA total of 37 Staphylococcus epidermidis isolates, isolated from corneal scraping of patients with bacterial keratitis and 20 isolates from healthy eyes (as control) (all isolates, isolated from, Ibn Al- Haietham eye hospital / Baghdad), were tested for slime production, 52.63% of all isolates were positive-slime production (23 isolates from patients and 7 isolates from controls). It was found that positive-slime producing S. epidermidis were exhibited a high resistance to antibiotics as compared to negative-slime producing isolates.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
The problem of job burnout has become one of the main problems for researchers in social welfare organizations (social protection bodies) - one of the formations of the Ministry of Labor and Social Affairs. Its negative effects increased in light of the COVID-19 pandemic, and in light of the Corona pandemic, the pressures and burdens of workers varied, which resulted in high rates of anxiety, tension, and intellectual and physical exhaustion, and then negatively affected their efficiency in performing work at the individual and organizational level, especially after the increasing tasks of these Bodies in carrying out their role in achieving the general goals and objectives as beingThe general goals are that they are responsible for providi
... Show More