Sludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydrophobicity, which can be modified by using unsaturated resin and silicon carbide nanoparticles (SiC-NPs). The obtained results show a remarkable increase and improvement in the mechanical properties of the artificial stone composite in the samples containing modified NGO with SiC-NPs. These samples have less porosity, smoother, more polished surface and, high bending and compressive strength. The addition of these materials to the artificial stone has increased durability and reduced costs and has caused water repellency, and prevented the penetration of harmful ions such as chloride, etc.
Vitrifications process one of the important methods to immobilize nuclear waste. In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the cry
... Show Moreتم في هذه الدراسة ، تزيين رقائق أكسيد الجرافين (GO) بجسيمات كوبلتيت النيكل النانوية NiCo2O4(NC) عن طريق الترسيب في الموقع ، وتم استخدام المتراكب المحضر (NC: GO) كسطح ماز لإزالة صبغة الميثيل الخضراء ( MG) من المحاليل المائية. تم التحقق من التغطية الناجحة لأوكسيد الجرافين بجزيئات كوبلتيت النيكل النانوية (NC) باستخدام دراسات FT-IR وحيود الأشعة السينية (XRD). كانت أحجام الجسيم
... Show MoreCopper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show MoreBackground: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs w
... Show MoreThe ceramic composite with different proportions of clay and silica was prepared with a grain size of 70 μm and the weight percentage was selected for four groups (clayx silica100-x) were x q15, 25, 30 and 50. In this manuscript, for each pressured sample, a sintering procedure was carried out for 3 hours under static air and at various sintering temperatures (1000, 1100, 1200, 1400)°C. After sintering, the density, porosity, water absorption, compression strength and thermal conductivity were measured. The best results were obtained using a mixture of 15% clay and 85% silica which were sintering at 1400°C for three hours under air.
The creation and characterisation of biodegradable blend films based on chitosan and polyvinyl alcohol for application in a range of packaging is described. The compatibility between the chitosan and PVA polymers was good. Composite films had a compact and homogeneous structure, according to the morphology analysis. The mechanical test result of PVA/CH at concentrations 5% showed, that The higher values of TS recorded in sample (p1, with 40 MPa) while the lower values appeared in sample (p9, with 22.09 MPa), the TS decreased gradually as the amount of PVA increased in blend film. While the blend film of pure Chitosan exhibits a poor mechanical strength which makes it a poor candidate for packaging but Blending CH with PVA together improved
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
In this study, the effect of the annealing temperature on the material properties and the structural properties of cuprous oxide was studied in order to investigate how the annealing temperature affects the material properties, and the temperature varied between 200℃, 300℃, 400℃ and 500 ℃ and was unannealed. The physical properties of the cuprous oxide were measured by X-ray diffraction (XRD). The XRD patterns showed that the Cu2O nanoparticles were highly pure, crystalline, and nano-sized. From the XRD results, we found the pure cuprite (Cu2O) phase. The values of crystal size were discovered and calculated by the Halder-Wagner and Size-Strain Plot (SSP) methods, respectively. The crystallite size increased
... Show MoreIn this research, the study effect of additive titanium dioxide powder (TiO2) as a lone composite ( Ep+TiO2) and a mixture of (TiO2) and silicon oxide (SiO2), ( Ep+ TiO2+SiO2)as a hybrid composite on the mechanical and physical properties for epoxy coating. Thescompsiteswere prepared by (Hand Lay- the molding) method. The samples were tested for compressive strength, surface hardness, modulus of elasticity, thermal conductivity and diffusion coefficient, from the results obtained showed improvement in mechanical properties after adding ceramic powders, as the alone composite (EP+ TiO2) had the highest compressive strength ( 53.738 ) ᴍPa, the hybrid composite ( EP+TiO2 +SiO2 ) had the
... Show More