As a result of recent developments in highway research as well as the increased use of vehicles, there has been a significant interest paid to the most current, effective, and precise Intelligent Transportation System (ITS). In the field of computer vision or digital image processing, the identification of specific objects in an image plays a crucial role in the creation of a comprehensive image. There is a challenge associated with Vehicle License Plate Recognition (VLPR) because of the variation in viewpoints, multiple formats, and non-uniform lighting conditions at the time of acquisition of the image, shape, and color, in addition, the difficulties like poor image resolution, blurry image, poor lighting, and low contrast, these must be overcome. This paper proposed a model by using Modify Bidirectional Associative Memory (MBAM), which is one type of Hetero-associative memory, MBAM works in two phases (learning and convergence phases) to recognize the number plate, and this proposed model can overcome these difficulties because MBAM's associative memory has a high ability to accept noise and distinguish distorted images, as well as the speed of the calculation process due to the small size of the network. The accuracy of plate region localization is 99.6%, the accuracy for character segmentation is 98%, and the achieved accuracy for character recognition is 100% in various circumstances
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreVibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree
... Show MoreThis research is concerned with a new type of ferrocement characterized by its lower density and enhanced thermal insulation. Lightweight ferrocement plates have many advantages, low weight, low cost, thermal insulation, environmental conservation. This work contain two group experimental : first different of layer ferrocement, second different of ratio aggregate to cement. The experiments were made to determined the optimum proportion of cement and lightweight aggregate (recycle thermestone ). A low W/C ratio of 0.4 was used with super plasticizer conforming to ASTM 494 Type G. The compressive strength of the mortar mixes is 20-25 MPa. The work also involved the determination of thermal properties .Thermal conductivity value of thi
... Show MoreThe field of structural optimization (optimal design) has grown rapidly over the past decades with many different optimization methods that could be used to produce a structure of minimum weight. This research deals with two aspects, in the first, a general numerical technique based on the finite element analysis and it suggests to investigate the preliminary behavior of metal stiffened plate under action of static load environment. The technique was included a finite element model of the structures using high- order isoparimetric plate elements to be used to create a certain models to obtain their optimum design. The models are characterized such that, each model is builded using different types of stiffener configuration. The second as
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
This paper suggest two method of recognition, these methods depend on the extraction of the feature of the principle component analysis when applied on the wavelet domain(multi-wavelet). First method, an idea of increasing the space of recognition, through calculating the eigenstructure of the diagonal sub-image details at five depths of wavelet transform is introduced. The effective eigen range selected here represent the base for image recognition. In second method, an idea of obtaining invariant wavelet space at all projections is presented. A new recursive from that represents invariant space of representing any image resolutions obtained from wavelet transform is adopted. In this way, all the major problems that effect the image and
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
