Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, coronal plane, and sagittal plane. Three different thresholds, which are based on texture features: mean, energy and entropy, are obtained automatically. This allowed to accurately separating the MRI slice into normal and abnormal one. However, the abnormality detection contained some normal blocks assigned wrongly as abnormal and vice versa. This problem is surmounted by applying the fine-tuning mechanism. Finally, the MRI slice abnormality detection is achieved by selecting the abnormal slices along its tumour region (Region of Interest-ROI).
Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreInformation security in data storage and transmission is increasingly important. On the other hand, images are used in many procedures. Therefore, preventing unauthorized access to image data is crucial by encrypting images to protect sensitive data or privacy. The methods and algorithms for masking or encoding images vary from simple spatial-domain methods to frequency-domain methods, which are the most complex and reliable. In this paper, a new cryptographic system based on the random key generator hybridization methodology by taking advantage of the properties of Discrete Cosine Transform (DCT) to generate an indefinite set of random keys and taking advantage of the low-frequency region coefficients after the DCT stage to pass them to
... Show MoreAIM: To evaluate the short-term effectiveness of Gamma knife radiosurgery as a modality of treatment of brain arteriovenous malformation. METHODS: Sixty-three patients with arteriovenous brain malformations underwent Gamma knife radiosurgery included in this prospective study between April 2017 and September 2018 with clinical and radiological with MRI follow up was done at three months and six months post-Gamma knife radiosurgery. By the end of the 12th-month post-Gamma knife radiosurgery, the patients were re-evaluated using digital subtraction angiography co-registered with M.R.I. During the 12 months follow up, CT scan or MRI was done at any time if any one of the patients᾽ condition deteriorated or developed signs and s
... Show MoreThis research attempts to shed light on a topic that is considered one of the most important topics of HRMs management, which is the Employee centric approach by examining its philosophy and understanding . To achieve the goal, the research relied on the philosophical analytical method, which is one of the approaches used in theoretical studies. The research reached a set of conclusions, the most important of which are the theoretical studies that addressed this entry in the English language and the lack of it in the Arabic language, according to the researcher's knowledge. The research reached a set of recommendations, the most important of which was that this approach needs more research, analysis and study at the practical and th
... Show MoreDetecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
This study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show MoreMost dinoflagellate had a resting cyst in their life cycle. This cyst was developed in unfavorable environmental condition. The conventional method for identifying dinoflagellate cyst in natural sediment requires morphological observation, isolating, germinating and cultivating the cysts. PCR is a highly sensitive method for detecting dinoflagellate cyst in the sediment. The aim of this study is to examine whether CO1 primer could detect DNA of multispecies dinoflagellate cysts in the sediment from our sampling sites. Dinoflagellate cyst DNA was extracted from 16 sediment samples. PCR method using COI primer was running. The sequencing of dinoflagellate cyst DNA was using BLAST. Results showed that there were two clades of dinoflag
... Show More