Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.
The study aimed to monitor the concept of reputation in the previous literature, its relationship to mental image and identity, and to reveal recent trends in its measurement Techniques.
The study relied on a descriptive approach using library survey and comparative analysis, and the study reached following conclusions:
Despite the beginning of the first signs of reputation In the fifties of the last century, however, Defining and standardizing the concept with clear and specific dimensions began in the 1990s and the beginning of the third millennium. The concept of reputation refers to the stakeholders’ overall evaluation of organizations, which reflects their perceptions of
... Show MoreWheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the problem of the semiotic employment of religious symbols in press reports published in the electronic press across two levels: Reading to perceive the visual message in its abstract form, and the second for re-understanding and interpretation, as this level gives semantics to reveal the implicit level of media messages through a set of semiotic criteria on which it was based to cut texts to reach the process of understanding and interpretation.
The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the p
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe study presents the test results of stabilizing gypseous soil embankment obtained from
Al- Faluja university Campus at Al-Ramady province. The laboratory investigation was divided
into three phases, The physical and chemical properties, the optimum liquid asphalt (emulsion)
requirements (which are manufactured in Iraq) were determined by using one dimensional
unconfined compression strength test.in the first phase , The optimum fluid content was 11%
(6% of emulsion with 5% water content).. At phase two, the effect of Aeration technique was
investigated using both direct shear and permeability test. At phase three for the case of static
load , the pure soil embankment model under dry test condition was investigated
A simple, fast, inexpensive and sensitive method has been proposed to screen and optimize experimental factors that effecting the determination of phenylephrine hydrochloride (PHE.HCl) in pure and pharmaceutical formulations. The method is based on the development of brown-colored charge transfer (CT) complex with p-Bromanil (p-Br) in an alkaline medium (pH=9) with 1.07 min after heating at 80 °C. ‘Design of Experiments’ (DOE) employing ‘Central Composite Face Centered Design’ (CCF) and ‘Response Surface Methodology’ (RSM) were applied as an improvement to traditional ‘One Variable at Time’ (OVAT) approach to evaluate the effects of variations in selected factors (volume of 5×10-3 M p-Br, heating time, and temperature) on
... Show MoreFlow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show More