Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.
Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how glucose excess, estrogen excess, and anxiety work together to affect the speed at which breast cancer cells multiply and the immune system’s response model is necessary to conceive of ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological panic, glucose excess, and estrogen excess on the interaction of cancer and immunity. The proposed model is precisely described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish four equilibrium positions. The stability analys
... Show MoreThe article is devoted to the Russian-Arabic translation, a particular theory of which has not been developed in domestic translation studies to the extent that the mechanisms of translation from and into European languages are described. In this regard, as well as with the growing volumes of Russian-Arabic translation, the issues of this private theory of translation require significant additions and new approaches. The authors set the task of determining the means of translation (cognitive and mental operations and language transformations) that contribute to the achievement of the most equivalent correspondences of such typologically different languages as Russian and Arabic. The work summarizes and analyzes the accumulated exper
... Show MoreDeficiencies in revenue-related accounting standards, including American accounting standards as well as international accounting standards, prompted the issuance of the International Financial Reporting Standard IFRS 15 "Revenue from contracts with customers" as part of the convergence plan between the FASB and the International Accounting Standards Board (IASB) according to the requirements of The joint venture between the two councils, whereby the standard aims to define the basis for reporting useful information to the users of the financial statements about the nature, amount, timing and uncertainty about the revenues and cash flows arising from a contract with the customer, The standard is base
... Show MoreThis study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreThe problem of the research is focused on importance limited of Iraq industrial companies in application of scientific measurements of supply chains performance, The research sought to achieve a group of goals, the most important are , identifying the strengths and weaknesses in the reality of supply chain in General Company for Cotton Industries, The data and information required are gathered from the dependence company, records through the field observations and personal interviews, the research used some quantitative indicators to measure of supply chain performance, The research reached to many conclusions , the most outstanding among them is the existence of a strong inverse correlatio
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreRemote sensing provide the best means to monitoring change in vegetation over a wide range of temporal scales over large areas. In this study, the vegetation index which has been applied known as the Stress Related Vegetation Index (STVI) on in the area around the Euphrates River and part of Al-Habbaniyah lake which located at western side of the river in Ramadi city, Al-Anbar province at Iraq to study the vegetation cover changes and detect the areas of changes, using two satellite sensors multispectral images such as TM and ALI, after geometric correction procedure to rectifying these images. The STVI-4 index result was the best than other vegetation indices (STVI-1 and STVI-3) to discriminate the vegetable cover distribution. The diff
... Show More