Preferred Language
Articles
/
hRe4CpEBVTCNdQwC3pLp
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.

Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Lecture Notes Of The Institute For Computer Sciences, Social Informatics And Telecommunications Engineering
Sensor Data Classification for the Indication of Lameness in Sheep
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 17 2019
Journal Name
Iraqi Journal Of Physics
Classification of the galaxy Milky Way using variable precision rough sets technique
...Show More Authors

Astronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation of the investments Iraqi fund External Development /an applied study
...Show More Authors

The research aims to evaluate Evaluation of the investments Iraqi fund for External development through the application of financial tools to a number of companies of the Iraqi Fund for External Development, and from the point of view to achieve the best returns from investment and the feasibility of the investments of the Iraqi Fund for External Development and the research community represents the Iraqi Fund for External Development and the amount of (28) A company, while the research sample is (4) companies (the Arab Petroleum Transportation Services Company, the Arab Iraqi Company for Livestock Development, the Bauhaus Company for prefabricated buildings and mineral installations, the Arab Fisheries Company) that were chosen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Sun Aug 28 2022
Journal Name
Geodesy And Cartography
OBJECT-BASED APPROACHES FOR LAND USE-LAND COVER CLASSIFICATION USING HIGH RESOLUTION QUICK BIRD SATELLITE IMAGERY (A CASE STUDY: KERBELA, IRAQ)
...Show More Authors

Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Tue Apr 18 2023
Journal Name
Corporate Reputation Review
The Absorptive Capacity of Knowledge as an Approach for Building Strategic Reliability in the Sponge Organizations/Small Organizations in Kirkuk Governorate as a Model
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Suggested Model for Using a Students Attendance Management Information Systems/ A Case Study In Lebanese French University/ Erbil
...Show More Authors

This study aims to design unified  electronic information system to manage students attendance in Lebanese French university/Erbil, as a system that simplifies the process of entering and counting the students absence, and generate absence reports to expel students who passed  the acceptable limit of being absent, and by that we can replace the traditional way of  using papers to count absence,  with  a complete electronically system for managing students attendance, in a way that makes the results accurate and unchangeable by the students.

            In order to achieve the study's objectives, we designed an information syst

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 30 2018
Journal Name
الجامعة المستنصرية كلية الإدارة و الاقتصاد
The possibility of adoption of hybrid cloud computing in Iraqi universities : an analytical study using technology acceptance model
...Show More Authors

الناصر، عامر عبد الرزاق عبد المحسن والكبيسي، صلاح الدين عواد كريم. 2018. إمكانية تبني الحوسبة السحابية الهجينة في الجامعات العراقية : دراسة تحليلية باستخدام أنموذج القبول التكنولوجي. مجلة الإدا

View Publication Preview PDF