Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.
The objective of this study is to measure the impact of financial development on economic growth in Iraq over the period (2004-2018) by applying a fully corrected square model (FMOLS) Whereas, a set of variables represented by (credit-to-private ratio of GDP, the ratio of money supply in the broad sense of GDP, percentage of bank deposits from GDP) were chosen as indicators for measuring financial development and GDP to measure economic growth.
Major tests have been carried out, such as the stability test (Unite Root Test), the integration test (Cointegration). Results of the study showed that there
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreBackground: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreThe research aims to evaluate Evaluation of the investments Iraqi fund for External development through the application of financial tools to a number of companies of the Iraqi Fund for External Development, and from the point of view to achieve the best returns from investment and the feasibility of the investments of the Iraqi Fund for External Development and the research community represents the Iraqi Fund for External Development and the amount of (28) A company, while the research sample is (4) companies (the Arab Petroleum Transportation Services Company, the Arab Iraqi Company for Livestock Development, the Bauhaus Company for prefabricated buildings and mineral installations, the Arab Fisheries Company) that were chosen
... Show MoreABSTRACT Purpose: the aim of this in vitro study was to compare the marginal gap and internal fitness between single crowns and the crowns within three-unit bridges of zirconium fabricated by CAD-CAM system. Materials and methods: A standard model from ivoclar company was used as a pattern to simulate three-units bridge (upper first molar and upper first premolar) as abutments used to fabricate stone models, eight single crowns for premolar and eight of three units bridges. Crowns and bridges fabricated by CAD-CAM system were cemented on their respective stone models then sectioned at the mid-point buccolingaully and misiodistaly and examined under stereomicroscope. Result: the marginal gap in premolar crowns and premolar within bridge we
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreMillions of lives might be saved if stained tissues could be detected quickly. Image classification algorithms may be used to detect the shape of cancerous cells, which is crucial in determining the severity of the disease. With the rapid advancement of digital technology, digital images now play a critical role in the current day, with rapid applications in the medical and visualization fields. Tissue segmentation in whole-slide photographs is a crucial task in digital pathology, as it is necessary for fast and accurate computer-aided diagnoses. When a tissue picture is stained with eosin and hematoxylin, precise tissue segmentation is especially important for a successful diagnosis. This kind of staining aids pathologists in disti
... Show MoreThe way artists deal with body in their artistic works has had so many forms and methods, whether as an object for their drawings or as a material to create live artistic performances that relate to the idea of correspondence and interaction between different artistic categories such as: drama, dance, and painting as it is the case of the artist Marina Abramovic who has always used her body as an artistic unit to generate meaning and to perform her lively shows.
To go deeper into her career, our work was divided into 3 sections:
The first section was devoted to follow the main artistic stages that her body had gone through, starting with paintings she performed using concepts based on acting, simulation and nudity and ending wi