Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
The study aimed to evaluating the inhibitory activity of apigenin extracted from Salvia officinalis leaves on the growth of L20B cancer cell in vitro, and through two incubation periods; 48 and 72 hours. Accordingly, eight concentrations (1.56, 3.13, 6.25, 12.5, 25.0, 50.0, 100.0 and 200.0 micromol) of apigenin and similar concentrations of vitamin C and carbon tetrachloride (CCl4) were tested. The apigenin revealed its significant inhibitory potentials against the growth of L20B cell line, especially at the low concentrations (1.56, 3.13 and 6.25 micromol) and at 72 incubation period in comparison with vitamin C and CCl4.
The evaluation of banks plays an important role in maintaining the interests of customers with the bank as well as providing continuous supervision and control by the Central Bank. The Central Bank of Iraq conducted an assessment of the Iraqi banks through the implementation of the CAMEL model during a certain period. This evaluation did not continue. The research provides continuity to the Central Bank's assessment and as a step to continue the evaluation process for all banks through the use of the CAMEL model. ROA and ROE by using the regression model for four Iraqi banks registered in the Iraqi market for securities during the period 2010-2016. The results showed that the capital and profitability indicators have a significan
... Show MoreIdentifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreThe public budget is on the same time an art and a science .As an accountable science it seeks balance between public income and public expenditure for an accountable year. And as an accountable art it seeks to achieve economic balance by distributing equitable income in order to reach sustainable development .This is the optimal use of all natural and human resources to address scarcity of natural resources facing the increase need of human resources by spending on education, health, environment, housing, agriculture and industry to achieve social justice for the current generation and future generations. Since the first budget in Iraq on 1921 an accounting budget, is balancing the sections and items has been adopted and since the publi
... Show MoreThis world is moving towards knowledge economy which basically depends on knowledge and information. So, the economic units need to develop its financial reporting system which helps to provide useful information in timeliness for investors in accordance with the requirements of the knowledge economy and meets the needs of those investors. This research aims to revealing the reflects of knowledge economy on the approaches of financial reporting and suggesting a financial reporting model in the environment of knowledge economy, depending on combining the value approach with the events approach using database and communication technology and providing useful accounting information for all users regardless of
... Show More