Preferred Language
Articles
/
hRcLWJIBVTCNdQwCD6wt
Delamination Detection in Glass-Fibre Reinforced Polymer (GFRP) Using Microwave Time Domain Reflectometry
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Oct 18 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM

... Show More
Scopus (13)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Oct 04 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The

... Show More
Publication Date
Tue Apr 16 2019
Journal Name
Proceedings Of The 2019 5th International Conference On Computer And Technology Applications
Four Char DNA Encoding for Anomaly Intrusion Detection System
...Show More Authors

Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the

... Show More
View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Credit Card Fraud Detection Challenges and Solutions: A Review
...Show More Authors

     Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them.  This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c

... Show More
Scopus (10)
Crossref (9)
Scopus Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from

... Show More
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 21 2025
Journal Name
2025 First International Conference On Advances In Computer Science, Electrical, Electronics, And Communication Technologies (ce2ct)
Enhancing Cloud Security Implementing AI-Based Intrusion Detection Systems
...Show More Authors

The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Al-academy
The treatment of the output of Marquez novels in the international cinema … Love in the time of cholera: منهل باسم سعيد الطاهر
...Show More Authors

Gabriel Garcia Marquez, the Nobel laureate of literature in 1982, is one of the most famous Latin American writers who have been distinguished by the magic of realism. We can say the months in the world and he is almost the most controversial for many reasons and for these reasons he did not accept that his novels turn into movies Marquez agreed to turn one of his most important and most beautiful novels, "Love in the Time of Cholera," which he wrote in 1985 and agreed to convert to a film in 2006 after the novel was bought by the author for $ 3 million. Mike Noel to bring out

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Physics
Power dissipation and time of breakdown in AC discharge of argon at a low pressure in the frequency range 5-10 kHz
...Show More Authors

The influence of 5-10 kHz audio frequency on the power dissipation in ac discharge of argon gas was studied experimentally, at pressures 50-80 mTorr and electrodes separation 10 cm (pd range 0.5-0.8 Torr.
cm). The measurements have shown that the discharge behavior in the ac circuit is equivalent to a series RC circuit. It is observed that the variation curve of discharge power P with the frequency f is approximately has a Gaussian shape. It is also observed that the curve of Pm- pd is the inverse of Paschen curve, where Pm is the maximum power in the frequency range. The time of breakdown is estimated from the curve of P- f.

View Publication Preview PDF