Preferred Language
Articles
/
hRboFooBVTCNdQwCgJAq
Numerical solution for weight reduction model due to health campaigns in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method to complete one cycle of LHS-FD simulation iteration. This process is repeated until n final iterations of LHS-FD are obtained. The means of these n final solutions (MLHFD solutions) are tabulated, graphed and analyzed. The numerical simulation results of MLHFD for the SEIR model are presented side-by-side with deterministic solutions obtained from the classical FD scheme and homotopy analysis method with Pade approximation (HAM-Pade). The present MLHFD results are also compared with the previous non-deterministic statistical estimations from 1995 to 2015. Good agreement between the two is perceived with small errors. MLHFD method can be used to predict future behavior, range and prediction interval for the epidemic model solutions. The expected profiles of the cocaine abuse subpopulations are projected until the year 2045. Both the statistical estimations and the deterministic results of FD and HAM-Pade are found to be within the MLHFD prediction intervals for all the years and for all the subpopulations considered.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Chemical Data Collections
Removal of diclofenac from aqueous solution on apricot seeds activated carbon synthesized by pyro carbonic acid microwave
...Show More Authors

Pharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series o

... Show More
Crossref (16)
Crossref
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Semi-Batch Reactive Distillation of Consecutive Reaction : The Saponification Reaction of Diethyl Adipate with Sodium Hydroxide Solution
...Show More Authors

This research presents a new study in reactive distillation by using consecutive reaction: the saponification reaction of diethyl adipate (DA) with sodium hydroxide solution .

The effect of three parameters were studied through a design of experiments applying 23 factorial design . These parameters were : the mole ratio of DA to NaOH solution (0.1 and 1) , NaOH solution concentration (3 N and 8 N) , and batch time (1.5 hr. and 3.5 hr.) . The conversion of DA to sodium monoethyladipate(SMA)(intermediate product) was the effect of these parameters which was detected . Also , the percentage purity of the intermediate product was recorded . The results showed that increasing mole ratio of DA to NaOHsolutio

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating the parameters of the binary logistic regression model using the genetic algorithm with practical application
...Show More Authors

Abstract

   Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model

    In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Geological Model of the Khabour Reservoir for Studying the Gas Condensate Blockage Effect on Gas Production, Akkas Gas Field, Western Iraq
...Show More Authors

The Khabour reservoir, Ordovician, Lower Paleozoic, Akkas gas field which is considered one of the main sandstone reservoirs in the west of Iraq. Researchers face difficulties in recognizing sandstone reservoirs since they are virtually always tight and heterogeneous. This paper is associated with the geological modeling of a gas-bearing reservoir that containing condensate appears while production when bottom hole pressure declines below the dew point. By defining the lithology and evaluating the petrophysical parameters of this complicated reservoir, a geological model for the reservoir is being built by using CMG BUILDER software (GEM tool) to create a static model. The petrophysical properties of a reservoir were computed using

... Show More
Scopus (4)
Scopus Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (20)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad
...Show More Authors

     The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.

     Was conducted to compare the two methods above and it became clear by comparing the  logistic regression model best of a Linear Discriminant  function written

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Distinguishing Shapes of Breast Cancer Masses in Ultrasound Images by Using Logistic Regression Model
...Show More Authors

The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 14 2022
Journal Name
Al-academy
The genealogy of rough discourse in contemporary theatre (YES, GODOT play) as a model
...Show More Authors

The research is exposed to the concept of rough discourse in contemporary theater with a critical reading that takes the genealogical work as a starting point in deconstructing the references of rough discourse and pursuing its paths in the civilization and cultural framework and how it identifies aesthetically within the theatrical field and the extents of its procedural treatments in order to reveal it and clarify its limits and representations, as the research included the first chapter. (methodological framework), the second chapter (theoretical framework), which included two sections, the first took place under the title (rough dramatization), while the second topic took place under the title (rough drama), and the second chapter re

... Show More
View Publication Preview PDF
Crossref