There are many configurations of directional control valve. Directional control valve has complex construction, such as moving spool to control the direction of actuator and desired speed. Magneto-rheological (MR) fluid is one of controllable fluids. Utilizing the MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper presents the design of multi configuration MR directional control valve. The construction and the principle of work of the valve are presented. The experiment was conducted to show the working principle of the valve functionally. The valve worked proportionally to control the direction and speed of hydraulic actuator. The result demonstrated the operation of MR directional valve in eight configurations. The MR directional valve can replace many types of the spool directional control valve for controlling hydraulic actuator.
In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model during di
... Show MoreIn this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri
... Show MoreThe effect of different cutting fluids on surface roughness of brass alloy workpiece during turning operation was carried out in this research. This was performed with different cutting speed, while other cutting parameters had been regarded as constants(feeding rate , and depth of cut). Surface roughness of machined parts that will be tested by electronic surface roughness tester .The results show that the standard coolant gives the best values of surface roughness for fixed cutting speed ,followed by sun flower oil that has approximately the same effect, while the air stream as a coolant gave unsatisfied results for the evaluation of surface roughness.
In the other hand the best values of surface roughness were recorded for max
... Show MoreStick- slip is the continuous stopping& release of the Bit/BHA due to the irregular down-hole rotation prompted by the existing relationship between the friction torque and the torque applied from the surface to free the bit.
Friction coefficient between BHA and wellbore is the main player of stick slip amount, which can be mitigated by support a good lubricators as additives in drilling mud.
Mathematical (or empirical) solves should be done through adjusting all parameters which supposed to reduce stick- slip as low as possible using different models, one of the main parameters is drilling mud. As per Nanoparticles drilling fluid is a new technology that offers high performance
... Show MoreThis paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
In this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and concentration in an inclined channel with variable viscosity has been examined. The perturbation technique in terms of the Weissenberg number to obtain explicit forms for the velocity field has been used. All the solutions of physical parameters of the Darcy parameter , Reynolds number , Peclet number and Magnetic parameter are discussed under the different values as shown in plots.