Single-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant performance evaluation. The most remarkable result emerged from the simulated data generated and detected by commercial devices is that the modeling process provides guidance for single-photon detectors design and characterization. The validation and testing results of the single-photon avalanche detectors (SPAD) simulator showed acceptable results with the theoretical and experimental results reported in related references and the device's data sheets.
Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe flow in a manifolds considered as an advanced problem in hydraulic engineering applications. The objectives of this study are to determine; the uniformity qn/q1 (ratio of the discharge at last outlet, qn to the discharge at first outlet, q1) and total head losses of the flow along straight and rectangular loop manifolds with different flow conditions. The straight pipes were with 18 m and 19 m long and with of 25.4 mm (1.0 in) in diameter each. While, the rectangular close loop configuration was with length of 19 m and with diameter of 25.4 mm (1.0 in) also. Constant head in the supply tank was used and the head is 2.10 m. It is found that outlets spacing and manifold configuration are the main factors aff
... Show MoreA study of characteristics of the lubricant oils and the physical properties is essential to know the quality of lubricant oils. The parameters that lead to classify oils have been studied in this research. Three types of multi-grades lubricant oils were applied under changing temperatures from 25 oC to 78oC to estimate the physical properties and mixture compositions. Kinematic viscosity, viscosity gravity constant and paraffin (P), naphthenes (N) and aromatics (A) (PNA) analysis are used to predict the composition of lubricants oil. Kinematic viscosity gives good behaviors and the oxidation stability for each lubricant oils. PNA analysis predicted fractions of paraffin (XP), naphthenes (XN),
... Show More
Find interested in the harmonization of variables and determinants of supply chain planning needs of the material, leading to the results start effective supply chain management, and end up quickly modify the sizes to suit the demand and turnover in the market. As well as identifying relationships between variables, and type of relationship used by the company with the processors and their feasibility, and indicate the level of interest and willingness to redesign the supply chain Company for Electrical Industries and build an integrated model for supply chain with the MRP system can be applied in the company.
Research depend on quantitative and descriptive method, It
... Show MoreThis research aims to identify the cognitive distortion of kindergarten children and its relationship to their parenting reinforcement. The researcher used the descriptive approach, being the closest to reaching the study objectives, To measure the relationship between the research variables, the researcher prepared two questionnaire tools for this purpose, the first for measuring "cognitive distortion", And the second is to measure "parental reinforcement", and each tool consisted of (20) items.
After ensuring the validity and reliability of the two research tools and their suitabi
... Show MoreThe present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake
... Show MoreThe physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.