Single-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant performance evaluation. The most remarkable result emerged from the simulated data generated and detected by commercial devices is that the modeling process provides guidance for single-photon detectors design and characterization. The validation and testing results of the single-photon avalanche detectors (SPAD) simulator showed acceptable results with the theoretical and experimental results reported in related references and the device's data sheets.
In our world, technological development has become inherent in all walks of life and is characterized by its speed in performance and uses. This development required the emergence of new technologies that represent a future revolution for a fourth industrial revolution in various fields, which contributed to finding many alternatives and innovative technical solutions that shortened time and space in terms of making Machines are smarter, more accurate, and faster in accomplishing the tasks intended for them, and we find the emergence of what is called artificial intelligence (artificial intelligence), which is the technology of the future, which is one of the most important outputs of the fourth industrial revolution, and artificial inte
... Show MoreThe presentwork is a theoretical study in the field of charged particle optics. It concentrates on the design of electrostatic enzil lens for focusing charge particles beams, using inverse method in designingthe electrostatic lens. The paraxial ray equation was solved to obtain the trajectory of the particles, the optical properties such as the focal length and spherical and chromatic aberration coefficients were determined. The shape of the electrode of the electrostatic lens were determined by solving poison equation and the results showed low values of spherical and chromatic aberrations, which are considered as good criteria for good design.
Empirical research in the disciplines of art and design has started to escalate and gather consideration within the academic community over the past few decades. However, still, graphic design tends to be a topic extremely under-researched by scholarly persons. Profound research in the field of graphic design extends far beyond the works produced by the designer himself (Khoury, 2009, p.844). In order to develop a clear insight, one needs to delve deep into the subcategories that the diverse field of graphic design is comprised of, including illustration, typography, interaction design, branding and even the impact of notable, eminent institutes from around the world that have taken the budding artists for quite a long time (Walke
... Show MoreWell integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with
... Show MoreAim: The present study aims to improve the poor water solubility of zaltoprofen which is a non-steroidal anti-inflammatory drug (NSAIDs) with a potent analgesic effect using solid dispersion then formulate it as a hollow type suppository to be more convenient for geriatric patients. Materials and Method: Zaltoprofen solid dispersions were prepared by solvent evaporation technique in different zaltoprofen: Soluplus® ratios. Results: Among the formulations tested, zaltoprofen solid dispersion preparation using 1:5 (zaltoprofen: Soluplus®) ratio showed the highest solubility and selected for further investigation. Solid dispersion characterization was evaluated by differential scanning calorimetry (DSC), X-ray diffraction study (XRD) and Fou
... Show MoreWell integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with the
... Show MoreLaser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0
The increase in population resulted in an increase in the consumption of water. The present work investigates the performance of a recycling solar- powered greywater treatment system for the purposes of irrigation, used to reduce the amount of waste grey water and reduce electricity consumption and reduce the costs of constructing large scale water treatment plants. The system consumes about 3814W per hour and provides water treatment about 1.4 m3 per day. The proposed system is designed to residential, office and governmental buildings application. Tests are conducted in an office building at the Ministry of Science and Technology site in Baghdad. Laboratorial water samples testing analyses are co
... Show MoreAbstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show More