The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
Excessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for anal
... Show MoreIn this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreThis paper aims to verify the existence of relationships between product innovation and the reputation of the organization. The study problem is that the State Organization for Marketing of Oil (SOMO) system is inflexible in terms of marketing procedures and needs innovative, unconventional methods in innovating its products and improving performance. The reputation of the organization. The importance of the study lies in that it is an attempt to raise the interest of SOMO in its approach to the research variables in order to enhance its competitive position in the future and improve the marketing business environment, which contributes to enhancing the reputation of the organization by product innovation. The study sample
... Show MoreThis work represents study the rock facies and flow unit classification for the Mishrif carbonate reservoir in Buzurgan oil Field, which located n the south eastern Iraq, using wire line logs, core samples and petrophysical data (log porosity and core permeability). Hydraulic flow units were identified using flow zone indicator approach and assessed within each rock type to reach better understanding of the controlling role of pore types and geometry in reservoir quality variations. Additionally, distribution of sedimentary facies and Rock Fabric Number along with porosity and permeability was analyzed in three wells (BU-1, BU-2, and BU-3). The interactive Petrophysics - IP software is used to assess the rock fabric number, flow zon
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte
The idea of carrying out research on incomplete data came from the circumstances of our dear country and the horrors of war, which resulted in the missing of many important data and in all aspects of economic, natural, health, scientific life, etc.,. The reasons for the missing are different, including what is outside the will of the concerned or be the will of the concerned, which is planned for that because of the cost or risk or because of the lack of possibilities for inspection. The missing data in this study were processed using Principal Component Analysis and self-organizing map methods using simulation. The variables of child health and variables affecting children's health were taken into account: breastfeed
... Show MoreImposed on foreign oil companies from important sources in the financing of the general budget in most countries of the world income tax is considered as well as be used to achieve political, economic and social goals, and has developed the concept of the tax until it became play an important role in influencing the economic conditions of a country, and the aim of this research is to statement imposed on foreign oil companies operating in Iraq in the financing of the state budget income tax contribution, as well as clarify the contracts type contracts with these companies, which is in favor of Iraq, together with the Income Tax Law No. (19) for the year / 2010, and instructed No. (5) for the year / 2011, which organized the tax process s
... Show More