Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field emission scanning electron microscope investigations show an increase in the film grain size with increasing the number of laser pulses. The carrier concentration of the film decreases and the mobility increases as the number of laser pulses increases. The cerium oxide film deposited on silicon at 900 laser pulses exhibits a minimum optical reflection. The maximum PCE was 19.27% and fill factor of 87% was obtained after the deposition of silicon solar cell with cerium oxide nanostructured film deposited at 1000 laser pulses.
Accurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th
... Show MoreThere is of great importance to know the values of the optical constants of materials due to their relationship with the optical properties and then with their practical applications. For this reason, it was proposed to study the optical constants of amorphous silicon nanostructures (quantum well, quantum wire, and quantum dot) because of their importance in the world of optical applications. In this study, it was adopted the Herve and Vandamme (HV) model of the refractive index because it was found that this model has very good optical properties for almost all semiconductors. Also, it was carried out by applying experimental results for the energy gaps of these three nanostructures, which makes the results of the theoretical calculations
... Show MoreIn this work, production of silicon metal at high purity of 99% by using Iraqi–starting materials (Iraqi sand and plant coal)was reported, electric arc–furnaces assembly was manufactured inside, the graphite electrodes were made from graphite scrap, this system is operate to produce about 800 gm /6hr of silicon metal to meet the need for manufacturing silicon oils, resins, solar cells, and electronic parts. The procedure, equipments and analysis data were described as well.
The aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreIn this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreBackground: Dental implants act as infrastructure for fixed restoration to look like as a natural tooth. Osseointegration is a biological events and considered as a base for success of dental implant. The aim of this study is to evaluate the bond strength between bone and Ti implant coated with mixture of nano hydroxyapatite-chitosan-collagen compared with Ti implants coated with nano hydroxyapatite implanted in rabbit tibia, after different period of implantation time (two and six weeks) by torque removal test. Material and methods: 36 screws of commercially pure titanium; 8mm in length and 3mm diameter , 18 screws coated with mixture of nano hydroxyapatite-chitosan-collagen and18 screws coated with nano hydroxyapatite by dip coating. St
... Show MoreFabrication and investigation of the properties of CdSe/ZnS core/shell for the luminescent solar concentrates (LSC) application is presented. An increase of the efficiency of a silicon solar cell was obtained by applying the LSC. The increase was a result of the optical properties of the semiconductor nanoparticles CdSe/ZnS core/shell that were deposited over the top surface of the silicon solar cell facing the illumination source (Halogen lamp). The gravity force was invested for the film deposition process.The optical properties of these nanoparticles were studied. The absorption spectra for the CdSe/ZnS core-shell were 270-600nm, i.e., located within the spectral response area of the examined solar cell. The energy gap values for CdSe
... Show MoreStructural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.
Two well-known fluorescent molecules: fluorescein sodium salt (FSS) and 2,7-dichloro fluorescein (DCF) were tried to prove the efficiency, trustability and repeatability of ISNAG fluorimeter by using discrete and continuous flow injection analysis modes.A linear range of 0.002-1 mmol/L for FSS and 0.003-0.7 mmol/L was for DCF, with LOD 0.0018 mmol/L and 0.002 mmol/L for FSS and DCF respectively, were obtained for discrete mode of analysis. While the continuous mode gave a linear range of 0.002-0.7 mmol/L and 0.003-0.5 mmol/L for FSS and DCF respectively, the LOD were 0.0016mmol/L and 0.0018 mmol/L for FSS and DCF respectively. The results were compared with classical method at variable λex for both fluorescent molecules at 95
... Show MoreA newly photometric analytical method characterized by its speed and sensitivity was developed for the determination of folic acid in pure and pharmaceutical samples via its oxidation to reddish-orange coloured complex through oxidation by cerium (IV) sulphate in aqua medium using homemade Ayah 3Sx3-3D-solar cell CFI photometer. The colored species were determined using supper bright green light emitting diode (LED) as a source. A 100μl was taken as a best sample volume for the determination of folic acid. The linearity of calibration curve for the instrument response versus folic acid concentration was 0.005-20 mmol.L-1 while the L.O.D. was 0.5 mol.L-1 from the stepwise dilution for the minimum concentration of lowest concentration
... Show More