Preferred Language
Articles
/
hBgRgZQBVTCNdQwCMhux
Pulsed laser deposition of nanostructured CeO2 antireflection coating for silicon solar cell
...Show More Authors

Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field emission scanning electron microscope investigations show an increase in the film grain size with increasing the number of laser pulses. The carrier concentration of the film decreases and the mobility increases as the number of laser pulses increases. The cerium oxide film deposited on silicon at 900 laser pulses exhibits a minimum optical reflection. The maximum PCE was 19.27% and fill factor of 87% was obtained after the deposition of silicon solar cell with cerium oxide nanostructured film deposited at 1000 laser pulses.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Silver Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid on the Hematological, Hepatic, and Renal Functions of Albino Rats
...Show More Authors

     Silver nanoparticles (Ag-NPs) have unique properties as antibacterial effects against locally isolated clinical Escherichia coli.  In this study, the evaluated the antibacterial activity of AgNPs, which were synthesized by laser ablation, against locally isolated clinical  Escherichia coli on nutrient agar media in vitro. Then assessed the toxicity of the bactericidal dose in albino rats in vivo with hematological, liver, and kidney functions as vital parameters. AgNPs were synthesized by pulsed laser ablation in liquid (PLAL).  AgNPs’ shape and nano size were characterized by atomic force microscopy (AFM), UV-vis spectroscopy, and scanning electron microscopy (

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Materials Science Forum
Study the Effect of Liquid Layer Level on the Formation of Zinc Oxide Nanoparticles Synthesized by Liquid-Phase Pulsed Laser Ablation
...Show More Authors

This work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accomp

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Study the Effect of Annealing on Optical and Electrical Properties of ZnS Thin Film Prepared by CO2 Laser Deposition Technique
...Show More Authors

In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
The Effect of Laser And Thermal Treatment on the Hardness and Adhesion Force on the Cermet Coating By Thermal Spray Technique
...Show More Authors

Ceramic coating compose from a ceramic mixture (MgO, Al2O3) and metall (Al-Ni) were produced by Thermal Spray Technique. The mixed ratio of used materials Al:Ni (50%) and 40% of Al2O3 and 10% MgO. This mixture was spray on a stainless steel substrate of type (316 L) by using thermal spray with flame method and at spraying distances (8, 12, 16 and 20) cm, then the prepared films were treated by laser and thermal treatment. After that performing a hardness and adhesion tests were eximined. The present study shows that the best value of the thermal treatment is 1000 ℃ for 30 mint; the optimum spray distance is 12 cm and most suitable laser is 500 mJ where the microscopic and mechanical character

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Numerical Analysis of SnO2/Zn2SnO4/n-CdS/p-CdTe Solar Cell Using the SCAPS-1D Simulation Software
...Show More Authors

This research includes the use of CdTe in the design of a solar cell. The SCAPS-1D computer program was used to simulate thin cell capacity of CdTe/CdS by numerical analysis with the addition of a buffer layer (Zn2SnO4) to enhance cell efficiency. The thickness of the window layer (n-CdS) was reduced to 25nm with the inclusion of an insulating layer of 50 nm thickness to prevent leakage towards the forward bias with respect to the lower charge carriers. As for the absorber layer thickness (p-CdTe), it varied between 0.5µm and 6µm. The preferable thickness in the absorbent layer was 1.5µm. Different operating temperatures (298K-388K) were used, while the highest conversion efficiency (η=18.43%) was obtain

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Engineering And Applied Sciences
Effect Of Aluminum On The Structural, Optical, Electrical And Photovoltaic Properties Of ZnSe/n-Si Heterojunction Solar Cell
...Show More Authors

Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add

... Show More
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Responsivity of porous silicon for blue visible light with high sensitivity
...Show More Authors

In this work, porous silicon (PS) are fabricated using electrochemical etching (ECE) process for p-type crystalline silicon (c-Si) wafers of (100) orientation. The structural, morphological and electrical properties of PS synthesized at etching current density of (10, 20, 30) mA/cm2 at constant etching time 10 min are studied. From X-ray diffraction (XRD) measurement, the value of FWHM is in general decreases with increasing current density for p-type porous silicon (p-PS). Atomic force microscope (AFM) showed that for p-PS the average pore diameter decreases at 20 mA. Porous silicon which formed on silicon will be a junction so I-V characteristics have been studied in the dark to calculate ideality factor (n), and saturation current (Is

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Preparation of SiO2:TiO2 for High-Performance Double Layer Anti-Reflection Coating
...Show More Authors

        In this work, an anti-reflection coating was prepared in the region (400-1000) nm of wavelength, with a double layer of silicon dioxide (SiO2) as an inner layer and the second layer of the mixture (SiO2) and titanium dioxide (TiO2) with certain ratios, as an outer layer using the chemical spraying method with a number of 6 sprays of layer SiO2 and 12 sprays of layer SiO2 - TiO2. Using the method of chemical spraying deposited on the glass as a substrate with a different number of sprays of SiO2, and a fixed number of TiO2-SiO2. The optical and structural properties were determined using UV-Vis spectroscopy and atomic force mi

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Optimization of nanostructured/nano sized rice husk ash preparation
...Show More Authors

The objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape dis

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Mechanical Engineering
Corrosion Resistance Enhancement for Low Carbon Steel by Gas Phase Coating
...Show More Authors

Corrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref