The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other hand . Finally , we discuss an error estimation procedure for the global error, we present a new, carefully designed modification of this error estimate .
This paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this paper, the class of semi
The present work has been characterized by higher order modes in the cavities of the Gyrotron; they are capable of producing RF plasma by developments of it. It uses for fusion systems. We choose the TE31,8 mode in our study. The main problem of gyrotron is the device of the thermal cavity loading. The problem of the thermal loading is solved when any parasitic modes suppress, absence of desired modes; the thermal loading is increased when the high power tube of gyrotron operation is unstable. The mathematical interaction model contains equations that describe the electron motion and the field profiles of the transferred electric modes of the resonator, these are interacting with electrons based
... Show MoreThis paper devoted to the analysis of regular singular boundary value problems for ordinary differential equations with a singularity of the different kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
This paper devoted to the analysis of regular singular initial value problems for ordinary differential equations with a singularity of the first kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation, two examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
The paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show More<span>Digital audio is required to transmit large sizes of audio information through the most common communication systems; in turn this leads to more challenges in both storage and archieving. In this paper, an efficient audio compressive scheme is proposed, it depends on combined transform coding scheme; it is consist of i) bi-orthogonal (tab 9/7) wavelet transform to decompose the audio signal into low & multi high sub-bands, ii) then the produced sub-bands passed through DCT to de-correlate the signal, iii) the product of the combined transform stage is passed through progressive hierarchical quantization, then traditional run-length encoding (RLE), iv) and finally LZW coding to generate the output mate bitstream.
... Show More