The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other hand . Finally , we discuss an error estimation procedure for the global error, we present a new, carefully designed modification of this error estimate .
In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th
... Show MoreThe time fractional order differential equations are fundamental tools that are used for modeling neuronal dynamics. These equations are obtained by substituting the time derivative of order where , in the standard equation with the Caputo fractional formula. In this paper, two implicit difference schemes: the linearly Euler implicit and the Crank-Nicolson (CN) finite difference schemes, are employed in solving a one-dimensional time-fractional semilinear equation with Dirichlet boundary conditions. Moreover, the consistency, stability and convergence of the proposed schemes are investigated. We prove that the IEM is unconditionally stable, while CNM is conditionally stable. Furthermore, a comparative study between these two s
... Show MoreIn this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are dis
... Show MoreThe aim of this study was to study chemical constituents of aerial parts of Cardaria draba since no phytochemical investigation had been studied before in Iraq. Aerial parts of Cardaria draba were defatted by maceration in hexane for 72 h. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous Methanol 90% as a solvent extraction for 18 h, and fractionated with petroleum ether- chloroform (CHCl3)- ethylacetate- and n-butanol respectivly. The ethyl acetate, n-butanol, and n-butanol after hydrolysis fractions were investigated by high performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for its phenolic acid and flavonoid contents. Flavono
... Show MoreThe aim of the current study is the investigation of tensile behavior of the semi - crystalline polymers : polypropylene (PP ) , high density polyethylene(HDPE) and low density polyethylene (LDPE) . The energy to break or deformation was determined as a function of extension rates , ( PP) was break at extension rate (5) mm/min but (HDPE) break at higher extension rates (25) mm/min while( LDPE) not break even at very high extension rates but it is deformation or failure .
Fluoroscopic images are a field of medical images that depends on the quality of image for correct diagnosis; the main trouble is the de-nosing and how to keep the poise between degradation of noisy image, from one side, and edge and fine details preservation, from the other side, especially when fluoroscopic images contain black and white type noise with high density. The previous filters could usually handle low/medium black and white type noise densities, that expense edge, =fine details preservation and fail with high density of noise that corrupts the images. Therefore, this paper proposed a new Multi-Line algorithm that deals with high-corrupted image with high density of black and white type noise. The experiments achieved i
... Show MoreBackground: Epstein Barr Virus (EBV) infection has been implicated in pathogenesis of several types of carcinomas such as nasopharyngeal carcinoma, gastric cancer and bladder cancer and has recently been associated with breast cancer.
Objective: To evaluate the relations between Epstein Barr virus-encoded small RNA (EBER) and breast cancer.
Methods: Twenty two cases of breast cancer were retrieved from the Al-Kadhimiya Teaching Hospital in Baghdad. Clinical data were analyzed from the medical records and formalin fixed, paraffin embedded tumor tissue were examined by Chromogeneic in situ hybridization (ISH) technique for the detection of EBER.
Results: The expression of EBER in tissues patients with breast cancer in the present