Preferred Language
Articles
/
hBeLgJEBVTCNdQwC55Wo
Modified third order iterative method for solving nonlinear equations
...Show More Authors

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations
...Show More Authors

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Association Of Arab Universities For Basic And Applied Sciences
Semi-analytical method for solving Fokker-Planck’s equations
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations
...Show More Authors

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Laplace Adomian and Laplace Modified Adomian Decomposition Methods for Solving Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type
...Show More Authors

In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Oscillation of Nonlinear First Order Neutral Differential Equations
...Show More Authors

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.

View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Runge-kutta Numerical Method for Solving Nonlinear Influenza Model
...Show More Authors
Abstract<p>The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.</p>
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Stability of Nonlinear Systems of Fractional Order Differential Equations
...Show More Authors

In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Arab Journal Of Basic And Applied Sciences
Daftardar-Jafari method for solving nonlinear thin film flow problem
...Show More Authors

View Publication
Crossref (16)
Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Generalized Spline Method for Integro-Differential Equations of Fractional Order
...Show More Authors

In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.

View Publication Preview PDF