Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were divided randomly into three subsets for training, validation, and testing the developed hybrid intelligent model. ANOVA results revealed that feed rate is highly affected by the surface roughness followed by the depth of cut. One-way ANOVA, including a Post-Hoc test, was used to evaluate the performance of three developed models. The hybrid model of Artificial Neural Network-Gravitational Search Algorithm (ANN-GSA) has outperformed Artificial Neural Network (ANN) and Artificial Neural Network-Genetic Algorithm (ANN-GA) models. ANN-GSA achieved minimum testing mean square error of 7.41 × 10−13 and a maximum R-value of 1. Further, its convergence speed was faster than ANN-GA. GSA proved its ability to improve the performance of BPNN, which suffers from local minima problems.
Our aim was to investigate the changes in the myocardium stiffness index for patients suffering from systemic hypertension, and to assess their left ventricular performance. We studied 263 hypertensive patients and 166 healthy subjects as a control group. By using conventional Doppler echocardiography, the following parameters were measured—Left ventricular end diastolic diameter, left ventricular end systolic diameter, transmitral early velocity, isovolumic relaxation time, and isovolumic contraction time. Tissue Doppler imaging (TDI) was used in the measurements of the early mitral annular velocity (Ea) and the diastolic stiffness was obtained by calculating the ratio E\Ea\LVIDd. Index myocardial performance (IMP) was calculated
... Show MoreA simple, precise, rapid, and accurate reversed – phase high performance liquid chromatographic method has been developed for the determination of guaifenesin in pure from pharmaceutical formulations.andindustrial effluent. Chromatography was carried out on supelco L7 reversed- phase column (25cm × 4.6mm), 5 microns, using a mixture of methanol –acetonitrile-water: (80: 10 :10 v/v/v) as a mobile phase at a flow rate of 1.0 ml.min-1. Detection was performed at 254nm at ambient temperature. The retention time for guaifenesin was found 2.4 minutes. The calibration curve was linear (r= 0.9998) over a concentration range from 0.08 to 0.8mg/ml. Limit of detection (LOD) and limit of quantification ( LOQ) were found 6µg/ml and 18µg/ml res
... Show More
The nanocompsite of alumina (Al2O3) produced a number of beneficial effects in alloys. There is increasing in resistance of materials to surface related failures , such as the mechanical properties , fatigue and stress corrosion cracking .The experimental results observed that the adding of reinforced nanomaterials type Al2O3 enhanced the HB hardness, UTS, 0.2 YS and ductility of 2014 Al/Al2O3 nano composites . the analysis of experiments, indicated that The maximum enhancement was observed at 0.4 wt.% Al2O3. The ultimate improvement percentage were 15.78% HB hardness, 18.1% (UTS), 12.86% (
... Show MoreHeat treatment by solid solution method in the ?+? phase region was used at 970°C for Ti-5Al-2.5Fe alloy. The specimens cooled under different cooling media [water quenched (WQ), air cooled (AC) and furnace cooled (FC)], and subsequently aged at 550°C for 4 hours. Five specimens from each treatment were immersed in simulated body fluid SBF for a period of time (3 months). The dependence of corrosion rate on compositional variation in the phases resulted from various type of cooling rates are discussed based on immersion tests. The EDXA results show the precipitation of phosphate and calcium compounds on the alloy after 3 months of immersion in blood plasma solution forming a bone-like apatite, which enhanced the alloy biocompatibility ma
... Show MoreTetragonal compound CuAl0.4Ti0.6Se2 semiconductor has been prepared by
melting the elementary elements of high purity in evacuated quartz tube under low
pressure 10-2 mbar and temperature 1100 oC about 24 hr. Single crystal has been
growth from this compound using slowly cooled average between (1-2) C/hr , also
thin films have been prepared using thermal evaporation technique and vacuum 10-6
mbar at room temperature .The structural properties have been studied for the powder
of compound of CuAl0.4Ti0.6Se2u using X-ray diffraction (XRD) . The structure of the
compound showed chalcopyrite structure with unite cell of right tetragonal and
dimensions of a=11.1776 Ao ,c=5.5888 Ao .The structure of thin films showed