In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.
The Child is the first sedum for the human society performing, and we deal in our
research to explain the nature of the mutual relations in between the form and the medicine
social caring foundation. So the motherhood and the childhood nowadays become the most
dedicated in the researchers works, whom interesting in the social affairs, and that whom
work in the medicine field as scientists.
So the child is the future man and must be in wright body construction that need to great
care and interest to make him wright mind through capability of performing anything support
to him.
In our research we deal with the main factors in which lead to infect the child by the
creative malfunction, like the environmental and m
This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreAbstract
In this research will be treated with a healthy phenomenon has a significant impact on different age groups in the community, but a phenomenon tonsillitis where they will be first Tawfiq model slope self moving averages seasonal ARMA Seasonal through systematic Xbox Cengnzla counter with rheumatoid tonsils in the city of Mosul, and for the period 2004-2009 with prediction of these numbers coming twelve months, has found that the specimen is the best representation of the data model is the phenomenon SARMA (1,1) * (2,1) 12 from the other side and explanatory variables using a maximum temperature and minimum temperature, sol
The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
The present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
In order to save natural resources, recycling necessarily becomes a top priority for all of us, to save exhaustible resources, produce green energy and preserve the environment.
In this perspective, we are trying to valorize a waste of animal origin, largely neglected by the actors of materials, through an industrial transformation into a biological charge to make new sustainable bio-composite materials.
Using a tensile test bench, we try to mechanically characterize this biomaterial of renewable resources that, unlike eco-composites, has been neglected by the material actors.
Obtained from waste, with a high recycling potential and from renewable resources, the bio-charge to be analyzed will be injected, later in different poly
In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show More