Preferred Language
Articles
/
hBZ844sBVTCNdQwCguO8
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research.  For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.

Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Maximum Likelihood Method And Bayesian Method For Estimating Some Non-Homogeneous Poisson Processes Models
...Show More Authors

Abstract

The Non - Homogeneous Poisson  process is considered  as one of the statistical subjects which had an importance in other sciences and a large application in different areas as waiting raws and rectifiable systems method , computer and communication systems and the theory of reliability and many other, also it used in modeling the phenomenon that occurred by unfixed way over time (all events that changed by time).

This research deals with some of the basic concepts that are related to the Non - Homogeneous Poisson process , This research carried out two models of the Non - Homogeneous Poisson process which are the power law model , and Musa –okumto ,   to estimate th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Advances In Animal And Veterinary Sciences
Dogs' hormonal levels drop after surgical gonadectomy in Iraq
...Show More Authors

View Publication
Scopus (4)
Scopus
Publication Date
Tue Jul 02 2013
Journal Name
Journal Of Baghdad College Of Dentistry
Local Drug Delivery Systems for Treating Periodontal Diseases: A Review of Literature
...Show More Authors

Publication Date
Sat May 01 2021
Journal Name
Civil Engineering Journal
The Suitability of Bailey Method for Design of Local Asphalt Concrete Mixture
...Show More Authors

The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Sep 14 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Local drug delivery systems for treating periodontal diseases (A review of literature)
...Show More Authors

In this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.

View Publication Preview PDF
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
Recovery of temporal coefficient for heat equation from non-local overdetermination conditions
...Show More Authors
Abstract<p>Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.</p>
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (49)
Crossref (46)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Preparation and Formation of Zeolite 5A from Local Kaolin Clay for Drying and Desuphurization of Liquefied Petroleum Gas
...Show More Authors

This work deals with preparation of zeolite 5A from Dewekhala kaolin clay in Al-Anbar region for drying and desulphurization of liquefied petroleum gas. The preparation of zeolite 5A includes treating kaolin clay with dilute hydrochloric acid 1N, treating metakaolin with NaOH solution to prepare 4A zeolite, ion exchange, and formation. For preparation of zeolite 4A, metakaolin treated at different temperatures (40, 60, 80, 90, and 100 °C) with different concentrations of sodium hydroxide solution (1, 2, 3, and 4 N) for 2 hours. The zeolite samples give the best relative crystallinity of zeolite prepared at 80 °C with NaOH concentration 3N (199%), and at 90 and 100°C with NaOH concentration solution 2N (184% and 189%, respectively). Ze

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref