This work deals with preparation of zeolite 5A from Dewekhala kaolin clay in Al-Anbar region for drying and desulphurization of liquefied petroleum gas. The preparation of zeolite 5A includes treating kaolin clay with dilute hydrochloric acid 1N, treating metakaolin with NaOH solution to prepare 4A zeolite, ion exchange, and formation. For preparation of zeolite 4A, metakaolin treated at different temperatures (40, 60, 80, 90, and 100 °C) with different concentrations of sodium hydroxide solution (1, 2, 3, and 4 N) for 2 hours. The zeolite samples give the best relative crystallinity of zeolite prepared at 80 °C with NaOH concentration 3N (199%), and at 90 and 100°C with NaOH concentration solution 2N (184% and 189%, respectively). Zeolite 5A was prepared by ion exchange of zeolite 4A prepared at 90°C and 2N NaOH concentration with 1.5 N calcium chloride solution at 90 °C and 5 hours, the ion exchange percentage was 66.6%. The formation experiments included mixing the prepared powder of 5A zeolite with different percentages of kaolin clay, citric acid and tartaric acid to form an irregular shape of zeolite granules. Tartaric acid binder gives higher bulk crushing strength than that obtained by using citric acid binder with no significant difference in the surface area. 7.5 weight% tartaric acid binder has the higher bulk crushing strength 206 newton with surface area 267.4 m2/g. Kaolin clay binder with 15 weight% gives the highest surface area 356 m2/g with bulk crushing strength 123 newton, it was chose as the best binder for zeolite 5A. The prepared granules of 5A zeolite were used for the adsorption experiments of H2O, and H2S contaminants from LPG. Different flow rates of LPG (3, 4, and 5 liter/minute) were studied. It was found that H2O is the strongly adsorbed component and H2S is the weakly adsorbed component. The best flow rate in this work for H2O, and H2S adsorption is 5 liter/minute of LPG. The adsorption capacity for H2O was 7.547 g/g and for H2S was 1.734 g/g.
Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Na-Y zeolite has been synthesized from locally available Iraqi kaolin clay. Characterization of the prepared zeolite was made by XRD and surface area measurement using N2 adsorption. Both synthetic Na-Y zeolite and kaolin clay have been tested for adsorption of 4-Nitro-phenol in batch mode experiments. Maximum removal efficiencies of 90% and 80% were obtained using the prepared zeolite and kaolin clay, respectively. Kinetics and equilibrium adsorption isotherms were investigated. Investigations showed that both Langmuir and Freundlich isotherms fit the experimental data quite well. On the
... Show MoreThe synthesis of zeolite NaX from locally available kaolin has been studied. The operating conditions for zeolite NaX production from kaolin with good crystallinity were as follows; a gel formation step of metakaolin in alkaline medium in presence of additional silica to crystallize the zeolite was achieved at 60 oC for 1 hr,and with stirring. In ageing step of the reactants at room temperature for 5 days and crystallization step at 87±2 oC for 24 hr. The catalytic activity of catalyst prepared from local kaolin was studied by using cumene cracking as a model for catalytic cracking and compared with standard HY zeolite and HX zeolite catalysts. The activity test was carried out in a laboratory continuous flow unit with fixed bed reactor
... Show MoreThe population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, an
... Show MoreThe current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning el
... Show MoreWith the spread of the use of liquefied petroleum gas (LPG) in developing countries for use in domestic cooking with the increase in the expansion and distribution of gas pipelines for residential buildings, the 2002 World Summit focused on sustainable development in clean energy for natural gas (NG) and LPG. The research aims to focus on the important aspects of design sustainability from an environmental point of view to reduce gas leakage, accidents, and explosions that occur socially to expand the distribution of LPG and motivate the consumers to use it instead of natural gas and other fuels, and from an economic point of view to take into account the annual cost and aesthetic imp
This research provides a novel technique for using metal organic frameworks (HKUST-1) as a gas storage system for liquefied petroleum gas (LPG) in Iraqi vehicles to avoid the drawbacks of the currently employed method of LPG gas storage. A low-cost adsorbent called HKUST-1 was prepared and characterized in this research to investigate its ability for propane storage at different temperatures (25, 30, 35, and 40 oC) and pressures of (1-7) bar. HKUST-1 was made using a hydrothermal method and characterized using powder X-ray diffraction, BET surface area, scanning electron microscopic (SEM), and Fourier Transforms infrared spectroscopy (FTIR). The HKUST-1 was produced using a hydrothermal technique and possesses a high crys
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
Light naphtha one of the products from distillation column in oil refineries used as feedstock for gasoline production. The major constituents of light naphtha are (Normal Paraffin, Isoparaffin, Naphthene, and Aromatic). In this paper, we used zeolite (5A) with uniform pores size (5Aº) to separate normal paraffin from light naphtha, due to suitable pore size for this process and compare the behavior of adsorption with activated carbon which has a wide range of pores size (micropores and mesopores) and high surface area. The process is done in a continuous system - Fixed bed reactor- at the vapor phase with the constant conditions of flow rate 5 ml/min, temperature 180oC, pressure 1.6 bar and 100-gram weight o
... Show MoreThis work dealt with separation of naphthenic hydrocarbons from non-naphthenic hydrocarbons and in particular concerns an improved process for increasing the naphthenes concentration in naphtha, The separation was examined using adsorption by Y and B zeolite in a fixed bed process. The concentration of naphthenes in the influent and effluent streams was determined using PONA classification. The effect of different operating variables such as feed flow rate (2- 4 L/hr); bed length (50 - 80 cm) on the adsorption capacity of Y and zeolite was studied. Increasing the bed length lead to increase the naphthenes concentration, and increasing the flow rate lead to decrease in the concentration of naphthenes, It was found that the decrease
... Show More