Nanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). Deposition and transport of nanoparticles were measured via nanoparticle concentration of effluent fluid, and energy distractive spectroscopy (EDS) measurement on the limestone core. It was found that silica nanoparticles dispersed in brine (NaCl) solutions are increasingly retained in limestone core as the solution ionic strength increases. On the other hand, less significant retention was measured when the nanoparticles were dispersed in DI water. The EDS measurements also reported the same trend of increased nanoparticles retention with salinity due to larger aggregates that result from the screening effect of the electrolyte on repulsive forces between nanoparticles. Thus, the observed change in surface wettability from oil to water-wet and the increase in oil production that reported in many core flooding laboratory studies are mainly related to the high adsorption rate of hydrophilic silica nanoparticles on carbonate surfaces.
In the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes wi
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe
... Show MoreNew, simple and sensitive batch and reverse FIA spectrophotometric methods for the determination of doxycycline hyclate in pure form and in pharmaceutical preparations were proposed. These methods based on oxidative coupling reaction between doxycycline hyclate and 3-methylbenzothiazolinone-2-hydrazone hydrochloride (MBTH) in the presence ammonium ceric sulfate in acidic medium, to form green water-soluble dye that is stable and has a maximum absorbance at 626 nm. A calibration graph shows that a Beer's law is obeyed over the concentration range of 1-80 and 0.5-110 ?g.mL-1 of DCH for the batch and rFIA respectively with detection limit of 0.325 ?g.mL-1 of DCH for r-FIA methods. All different chemicals and physical experimental paramete
... Show MoreThis paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreIn this publication, several six coordinate Co(III)-complexes are reported. The reaction of 2,3-butanedione monoxime with ethylenediamine or o-phenylenediamine in mole ratios of 2:1 gave the tetradentate imine-oxime ligands diaminoethane-N,N`-bis(2-butylidine-3-onedioxime) H2L1 and o-phenylenediamine-N,N`-bis(2-butylidine-3-onedioxime), respectively. The reaction of H2L1 and H2L2 with Co(NO3)2, and the amino acid co-ligands (glycine or serine) resulted in the formation of the required complexes. Upon complex formation, the ligands behave as a neutral tetradantate species, while the amino acid co-ligand acts as a monobasic species. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectro
... Show MoreThis work involves synthesis of some new heterocyclic compounds including 1, 3-diazetine. The new Schiff bases [VI] ad derived from 3-((5-hydrazinyl-4-phenyl-4H-1, 2, 4-triazol-3-yl) methyl)-1H-indole [V] which was synthesized by refluxing 5-((1H-indol-3-yl) methyl)-4-phenyl-4H-1, 2, 4-triazole-3-thiol [IV] with hydrazine hydrate in absolute ethanol and this amino compound [V] condensation with different aromatic aldehydes in absolute ethanol to yielded a new Schiff bases [VI] ad. N-acyl compounds [VII] ad were synthesized by addition reaction of acetyl chloride to imine group of Schiff bases in dry benzene. The new diazetine derivatives [VIII] ad synthesized by the reaction of N-acyl compounds [VII] ad with sodium azide in dimethylformamid
... Show MoreIn this study , the effect of an organic compound prepared as derivative of oxazepine tested on the activities of aspartate amino trasferase (AST) and alanin amino transferase (ALT). The kinetic study of such enzymes is in the presence of oxazepine derivative. The results revealed that the organic compound is a non competitive inhibitor for both enzymes. The Km value for AST is 1.3 × 10-3 M and Vmax for the uninhibited is 200 U/mL and for the inhibited is 111.1 U/mL while Km value for ALT is 2.5 × 10-3 M and Vmax are 89.66 U/mL and 56.77 U/mL for the uninhibited and inhibited enzyme respectively.
The reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show More