Preferred Language
Articles
/
h4YrvYYBIXToZYALb7QY
Performance of Post-Fire Composite Prestressed Concrete Beam Topped with Reinforced Concrete Flange
...Show More Authors

The performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high temperature flame of 300, 500, and 700°C, and the remaining beams were left without burning as reference specimens. Then, the burned beams were cooled gradually by leaving them at an ambient lab condition, after which the specimens were loaded until failure to study the effect of temperature on the residual beams serviceability, to determine the ultimate load-carrying capacity of each specimen in comparison with unburned reference beam, and to find the limit of the temperature for a full composite section to remain composite. It was found that the exposure to fire temperature increased the camber of composite beam at all periods of the burning and cooling cycle as well as the residual camber, along with reduction in beam stiffness and the modulus of elasticity of concrete in addition to decrease in the load-carrying capacity.

Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Materials In Civil Engineering
Moisture Susceptibility and Fatigue Performance of Hydrated Lime–Modified Asphalt Concrete: Experiment and Design Application Case Study
...Show More Authors

Hydrated lime has been recognized as an effective additive used to improve asphalt concrete properties in pavement applications. However, further work is still needed to quantify the effect of hydrated lime on asphaltic concrete performance under varied weather, temperature, and environmental conditions and in the application of different pavement courses. A research project was conducted using hydrated lime to modify the asphalt concretes used for the applications of wearing (surface), leveling (binder), and base courses. A previous publication reported the experimental study on the resistance to Marshall stability and the volumetric properties, the resilient modulus, and permanent deformation at three different weather temperatures. This

... Show More
View Publication
Crossref (13)
Crossref
Publication Date
Sun Sep 01 2024
Journal Name
Results In Engineering
Push-out test of eco-friendly steel-concrete–steel composite sections enhanced by polypropylene fibers: An experimental study and statistical analysis
...Show More Authors

Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluation of Mechanical Strength of Epoxy Polymer Concrete Reinforcement with Different Types of Fibers
...Show More Authors

 Polymer composite materials were prepared by mixing epoxy resin with sand particles in three different grain size (150-300 ), (300-600 ) and (600- 1200) μm . The weight of epoxy was 15%, 20%, 25% and 30% of the total weight. Compression  strength and flexural strength tests were carried out for the prepared samples .The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes .These percentages were adopted to fill the void between particles sand which have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin. The

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
The Effect of Cement and Admixture Types on the Resistance of High Performance Concrete to Internal Sulphate Attack
...Show More Authors

This work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.

The r

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Steel-Concrete-Steel Sandwich Beams with Truss Configuration of Shear Connectors
...Show More Authors

This paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 11 2017
Journal Name
Journal Of Engineering
Thermo Elastic Analysis of Carbon Nanotube-Reinforced Composite Cylinder Utilizing Finite Element Method with the Theory of Elasticity
...Show More Authors

  

View Publication Preview PDF
Publication Date
Sun Aug 07 2022
Journal Name
Engineering, Technology & Applied Science Research Etasr
The Combined Strengthening Effect of CFRP Wrapping and NSM CFRP Laminates on the Flexural Behavior of Post-Tensioning Concrete Girders Subjected to Partially Strand Damage
...Show More Authors

The studies on unbonded post-tensioned concrete members strengthened with Carbon Fiber Reinforced Polymers (CFRPs) are limited and the effect of strengthening on the strain of unbonded pre-stressed steel is not well characterized. Estimating the flexural capacity of unbound post-tensioned members using the design methodology specified in the design guidelines for FRP strengthening techniques of bonded post-tensioned members does not provide a reliable evaluation. This study investigates the behavior of unbonded post-tensioned concrete members with partial strand damage (14.3% and 28.6% damage) and strengthened with CFRP laminates using a near-surface mounted technique with and without U-wrap anchorages. The experimental results show

... Show More
Crossref (7)
Crossref
Publication Date
Thu Aug 29 2024
Journal Name
Materials
Experimental Study to Investigate the Performance-Related Properties of Modified Asphalt Concrete Using Nanomaterials Al2O3, SiO2, and TiO2
...Show More Authors

The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im

... Show More
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Nov 07 2023
Journal Name
Innovative Infrastructure Solutions
Enhancing load-bearing performance of hybrid recycled aggregate concrete-filled columns using SBR, steel fibers and polypropylene fibers
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Aug 29 2024
Journal Name
Materials
Experimental Study to Investigate the Performance-Related Properties of Modified Asphalt Concrete Using Nanomaterials Al2O3, SiO2, and TiO2
...Show More Authors

The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref