This study investigated the bioethanol production from green algae Chlorella vulgaris depending on its carbohydrate-enriched biomass. Four different phosphorous concentrations were employed to stimulate bioethanol production from Chlorella vulgaris. The impact of various phosphorous values on Chlorella vulgaris growth rate as well as primary product (carbohydrate) were evaluated. High performance liquid chromatography was utilized in this work. The stationary phase was identified as day 14, 12, 10 and 6 in treatments 6, 4, 2 and g/L, respectively. The findings suggest that the treatment without phosphorous addition had the highest record of carbohydrate content (22.64% dry weight) as well as the highest bioethanol yield (20.66% dry weight). It was also found that at 0 g/L treatment, the growth rate was the highest with 0.75 (day-1) while the lowest was recorded at 0.42 with at 6 g/L. Finally, with the treatment of 0 g/L, the shortest doubling time was obtained with 1.35 days, while the highest one was observed with 2.4 days at 6 g/L treatment.
Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting
Thirteen morphometric characters of catfish
Increasing demands on producing environmentally friendly products are becoming a driving force for designing highly active catalysts. Thus, surfaces that efficiently catalyse the nitrogen reduction reactions are greatly sought in moderating air-pollutant emissions. This contribution aims to computationally investigate the hydrodenitrogenation (HDN) networks of pyridine over the γ-Mo2N(111) surface using a density functional theory (DFT) approach. Various adsorption configurations have been considered for the molecularly adsorbed pyridine. Findings indicate that pyridine can be adsorbed via side-on and end-on modes in six geometries in which one adsorption site is revealed to have the lowest adsorption energy (
... Show More