Abstract. Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration routine by accounting for all the variables affecting the backscattered energy, including the essential factor of angle of incidence. A new robust incidence angle estimation approach has been developed which has proven capable of delivering a reliable estimation for the scattering direction of the individual echoes. The routine was tested and validated both visually and statistically over various land cover types with simple and challenging surface trends. This proved the validity of this approach to deliver the optimal match between overlapping flightlines after calibration, particularly by adopting a parameter which accounts for the angle of incidence effect.
Regression Discontinuity (RD) means a study that exposes a definite group to the effect of a treatment. The uniqueness of this design lies in classifying the study population into two groups based on a specific threshold limit or regression point, and this point is determined in advance according to the terms of the study and its requirements. Thus , thinking was focused on finding a solution to the issue of workers retirement and trying to propose a scenario to attract the idea of granting an end-of-service reward to fill the gap ( discontinuity point) if it had not been granted. The regression discontinuity method has been used to study and to estimate the effect of the end -service reward on the cutoff of insured workers as well as t
... Show MoreRadio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreRadio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreThis research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreAttacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover. The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More