The stability and releasing profile of 2:1 core: wall ratio ibuprofen microcapsules prepared by aqueous coacervation (gelatin and acacia polymers coat) and an organic coacervation methods (ethyl cellulose and sodium alginate polymers coat) in weight equivalent to 300mg drug, were studied using different storage temperatures 40°C, 50°C ,60°C and refrigerator temperature 4°C in an opened and closed container for three months (releasing profile) and four months (stability study).It was found that, these ibuprofen microcapsules were stable with expiration dates of 4.1 and 3.1 years for aqueous and an organic method respectively.Aqueous prepared ibuprofen microcapsules were found more stable than those microcapsules prepared by or
... Show MoreThermal conductivity measurement was done for specimens of Polystyrene/ titanium dioxide, Polycarbonate/ titanium dioxide and Polymethylmetha acrylate/ titanium dioxide composites for weight ratio of 1.9/ 0.1 and 1.8/ 0.2 wt% for different thickness of the samples. The experimental results show that the thermal conductivity is increased with the increasing of thickness of layers and with the weight ratio of TiO2
In this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
Objective(s): The aim of this study is to compare the impact strength of a heat cured denture-base acrylic resin
reinforced with metal wire and glass fibers.
Methodology: Forty five specimens were prepared from pink heat cure acrylic resin. Specimens were grouped into;
group-I (control group) which consists of 15 specimens with no reinforcement, group-II which consists of 15 specimens
reinforced with metal wire, and group-III consists of 15 specimens reinforced with glass fibers. Specimens were tested
by using charpy impact machine.
Results: The result showed that there was a highly significant difference in impact strength value among the testing
groups at (P < 0.001).
Conclusion: The impact str
... Show MoreIn this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate) on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH)2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were comp
... Show MoreThe accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive,
Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K
The study was planned to evaluate the effect of adding Guanidinoacetic acid in some characteristics of the sperm of the rams. This study was conducted in the animal field of the Animal Production Department / Faculty of Agricultural Engineering Sciences / University of Baghdad, for the period from 5/8/2018 to 28/2/2019. In this experiment, 3 rams were used at the age of 2-2.5 years and weighed 50-54 kg. The semen was collected early in the morning and once a week and the semen was pooled to remove the individual differences. The treatments were divided: GAA-free control group, treatment T1 (0.05 mg / 100 ml GAA), T2 treatment (0.1 mg / 100 ml GAA) and T3 treatment (0.2 mg / 100 ml GAA). The results of the study showed a significant decrease
... Show MoreDespite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show More