Metronidazole-MIPs were prepared by using (MDZ) as the template as well as allylchloride (AYC) or allylbromide (AYB) as monomer, used (TMPTA) tri-methylol propane tri-acrylate or ethylene glycol di-methyl acrylate (EGDMA) as cross-linker and initiator used (BP) benzyl peroxide. By using different plasticizers (di butyl Phthalate (DBPH), Nitrobenzene (NB), oleic acid (OA) and paraffin) for MDZ-MIP1 and (Di-butyl sebecate (DBS), Di-methyl acrylate (DMA), Tributylphosphate(TBP) and Tris(ethylhexyl phosphate (TEHP) ) for MDZ-MIP2. Membranes of MIPs were prepared in PVC matrix. The characterizations of each electrode were determined The Slope range from (55.083 - 43.711) mV/decade, Limit of Detection (8 X 10 -4- 2 X 10-6) and Linearity
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreThe aim of this research is to prepare a set of complexes with the general formula [M(HMB)n] , where M=VO (II) , Cr(III) and Cu(II) while n=2,3,2 respectively resulting from the reaction of anew ligand [N'-(2-hydroxy-3-methoxybenzyl)-4-methylbenzohydrazide] (HMB) derived from the reaction of the tow substances (4-methylbenzohydrazide and 2-hydroxy-3-methoxy benzaldehyde) with metal ions. The prepared compounds were identified by several spectroscopic methods such as Infrared, Nuclear Magnetic Resonance and Electronic Spectra. From the results of the measurements, it was suggested that the prepared complexes have different geometries such as square planar (Cu), square pyramidal (VO) and octahedral (Cr). DFT simulations backed up
... Show MoreThe free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with th
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
Rapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm
... Show More